論文 研磨砕砂の簡易的な品質評価

田畑 美紀^{*1}·白石 雅明^{*2}·高海 克彦^{*3}

要旨: 砕砂を研磨処理することで砕砂表面は滑らかになり,一部の粒径では粒子形状がより 丸くなったことが顕微鏡観察により明らかになった。この研磨砕砂の特性をより簡易的に評 価するため,モルタルフロー試験より算出した細骨材の拘束水比や変形係数を指標とする方 法について考察した。さらに,簡易評価方法の適用範囲の拡大のため,砕砂の種類を変えた 場合についてもフロー試験を行い,拘束水比や変形係数により,砕砂の種類によらず研磨砕 砂の品質を評価できることが可能であることを確認した。

キーワード:砕砂,粗さ,形状,流動性,変形係数,拘束水比

1. はじめに

西日本では、コンクリート用細骨材を海砂に 大きく依存していたため、海砂の枯渇が問題と なった。環境保全を目的として、平成18年度か ら瀬戸内海沿岸地域を中心に海砂の採取が全面 禁止となった。これにともない、西日本の細骨 材不足は深刻化し、海砂の代替材として、以前 は補助砂としての使用が主流であった砕砂の全 量使用方法の開発が望まれている。しかし、砕 砂の粒子形状の粗さは、流動性の低下といった 問題を引き起こす。このような状況から、より 高品質な砕砂が求められるようになった。

我々はこれまでの研究で、砕砂を研磨するこ とで砕砂表面が滑らかになるとともに、一部の 粒径範囲では粒子形状が丸くなり、これが流動 性向上に影響したことを報告している¹⁾。また、 粒子性状の評価に、顕微鏡や画像処理装置をそ の都度使用するのは実用的ではないことから、 研磨砕砂の粒子性状をより簡易的かつ定量的に 評価するため、モルタルフロー試験によって、 モルタルの流動性と水粉体容積比との関係から 拘束水比と変形係数を算出し、これらの指標と 砕砂の表面粗さや粒子形状との関連性を考察し た²⁾。 本研究では,異なる岩種の砕砂を用いた場合 についてもモルタルフロー試験を行い,どんな 種類の砂に関しても,変形係数や拘束水比を用 いて品質評価をすることができるか検証した。

実験の概要

2.1 使用試料

本研究のモルタルフロー試験で用いた細骨材 は、佐賀県産安山岩砕砂,山口県産硬質砂岩砕 砂および比較検討用の海砂の3種類である。硬 質砂岩砕砂は安山岩砕砂に比べ、硬質で破砕や 磨耗を受けにくいものである。安山岩砕砂につ いては、実験用の研磨砕砂製造機で研磨処理し たものを用いた。硬質砂岩砕砂については、プ ラントに設置されている研磨砕砂製造機で研磨 処理したもの、つまり製品として製造されたも のを用いた。使用試料の呼称および物性値を表 -1に示す。

2.2 研磨砕砂の製造方法¹⁾

研磨砕砂製造機は,砕砂投入部,円筒形ドラム,排出部で構成されており,円筒形ドラムの内部には定められた粒度(13~80mm)の媒体石が投入されている。砕砂の研磨過程を,以下に示す。砕砂と水を質量比 4:1 の割合で投入し,

*1 山口大学大学院 理工学研究科 社会建設工学専攻(正会員)
*2 山口大学 工学部社会建設工学科
*3 山口大学 工学部社会建設工学科 助教授 工博(正会員)

呼称	岩種	研磨処理の有無	絶乾密度 (g/cm ³)	表乾密度 (g/cm ³)	吸水率 (%)	実積率 (%)	粒形判定 実積率(%)	粗粒率
AP0		無	2.51	2.59	3.18	65.91	55.91	2.69
AP1	安山岩	有(1回)	2.56	2.62	2.46	65.26	55.43	2.70
AP2		有(2回)	2.57	2.62	2.02	65.64	55.45	2.69
AP3		有(3回)	2.59	2.62	1.17	65.45	55.00	2.65
HN	硬质动型	無	2.60	2.55	1.73	68.90	55.71	2.82
HP	恢貝的石	有	2.61	2.58	1.21	69.48	56.54	2.70
SS	海砂	無	2.56	2.60	1.55	63.89	55.28	2.60

表-1 使用試料の呼称と物性

円筒形ドラムにて研磨した後,研磨砕砂と水が 排出される。この排出水を分離する過程で,微 粒分は洗い流される。処理後の研磨砕砂を自然 乾燥させて1回の研磨工程が完了となる。以上 の工程を研磨回数ごとに繰り返す。

2.3 試験項目と概要

本研究では,2.1 や表-1 で示したような, 計7種類の細骨材を用いた。

精密機器による粒子性状の評価は容易でない ため、より簡易な評価が必要であると考えられ る。既往の研究より、モルタルフロー値におよ ぼす産地別の細骨材の特性が、見かけの拘束水 比や変形係数によって一意的に表わせることが 報告されている³⁾。この評価法を応用し、安山 岩砕砂 AP0~AP3、硬質砂岩砕砂 HP・HN、海 砂 SS をそれぞれ全量使用したモルタルフロー 試験を行い、研磨砕砂の粒子特性が流動性に及 ぼす影響を検討し、粒子表面の粗さや粒子形状 との相関性についても検討した。また、硬質砂 岩砕砂のモルタルフロー試験時に空気量測定を 行い、研磨処理の有無と空気連行量の関係につ いて検討した。

(1) モルタルの配合とフロー試験の方法

本研究では,表-2に示すように細骨材容積 比を0.2,0.4,0.5,0.53の4ケースごとに,水 粉体容積比を4種類に変え,1つの試料につき 16種類の配合とした。ただし,安山岩砕砂は粒 度分布の違いが流動性に影響を与えないように するため,粗粒率が2.7になるように粒度調整 を行った。硬質砂岩砕砂は製品および原砂その ものとして品質を評価するために,粒度調整は 行っていない。

表-2 モルタルフロー試験配合 (全試料共通)

細骨材容積比	細骨材質量(g)	水粉体容積比
		1.1
0.2	220	1.2
0.2	520	1.3
		1.4
		1.4
0.4	640	1.6
0.4	040	1.8
		2.0
		1.9
0.5	800	2.2
0.5	800	2.5
		2.8
		2.0
0.52	949	2.3
0.33	040	2.6
		2.9

モルタルフロー試験は、JISA 5201「セメント の物理試験方法」に基づき、モルタルに振動を 与えない水平な広がりを2回測定し、その平均 値をフロー値とした。

モルタル練混ぜ時に連行される空気量が,流 動性に及ぼす影響の程度を検討するため,硬質 砂岩砕砂のフロー試験時に,モルタルの空気量 測定を行った。

(2) 拘束水比と変形係数の算出方法³⁾

細骨材容積比を一定のまま,水粉体容積比を 変化させたモルタルフロー試験を行うと,図ー 1のようにモルタルの変形係数 E_m と拘束水比 β_m は,モルタルフロー面積比 Γ_p ー水粉体容積 比 V_w/V_p 関係の一次回帰直線の傾きと切片とし て求められ,これらは式(1)で表される。

$$V_s / V_p = E_m \cdot \Gamma_m + \beta_m \tag{1}$$

ここで、 V_w/V_p は水粉体容積比、 E_m はモルタルの変形係数、 Γ_m はモルタルのフロー面積比(= $(F_m/100)^2-1)$ 、 F_m はモルタルフロー値、 β_m は

図-1 モルタルフロー面積比と 水粉体容積比の関係

モルタルの拘束水比を表す。

式(1)を基本式として,式(2)から細骨材の拘束 水比β_sが,式(3)から細骨材の変形係数 E_sが算 出できる。

$$\beta_{s} = \{ (\beta_{m} - \kappa_{pm} \cdot \beta_{p}) / (1 + \beta_{m}) \} \cdot \{ (1 - V_{s}) / V_{s} \}$$
(2)
$$E_{s} = E_{m} \{ 1 - V_{s} (1 + \beta_{s}) / (1 - V_{s}) - E_{p}$$
(3)

ここで、 κ_{pm} はペーストとモルタルの練混ぜ 性能の違いによる補正係数(=1.03)、 β_p は粉体 の拘束水比(=1.00)、 V_s は細骨材容積比、 E_p は 粉体の変形係数(=0.11)を表す。

なお、細骨材の拘束水比β_sや変形係数 E_sは 値が小さい程、それを用いたモルタルの流動性 が良く、細骨材の特性が良好であることを表し ている。

- 3. 実験結果
- 3.1 安山岩砕砂の各試験結果
 - (1) フロー試験結果

各配合におけるモルタルフロー値およびフロ 一面積比 Γ_mを表-3に示す。いずれの配合に おいても、研磨回数の増加とともに、モルタル フロー値が増加しており、研磨処理により砕砂 を用いたモルタルの流動性向上が確認できた。 安山岩砕砂 AP のフロー面積比 Γ_mと水粉体容 積比 V_w/V_pの関係を図-2に示す。図中には, 各細骨材容積比における実験結果の一次回帰式 もあわせて示す。一次回帰式の切片がモルタル の拘束水比βm, 傾きが変形係数Emを表してい る。拘束水比 β_m および変形係数 E_m から,式(2), 式(3)で算定した細骨材の拘束水比β、ならびに 変形係数 Esを表-4に示す。また、図-3にこ れまでの研究で測定してきた, 粒子表面の粗さ を示す算術平均粗さ Ra を, 図-4に粒子の形 状を表す内接円真円度指数Rを,変形係数E_s(細 骨材容積比V_s=0.53の場合)および拘束水比β_s(細 骨材容積比 V_s=0.2 の場合)と比較して示す。図 -3および図-4は、相関が最も明確な細骨材 容積比における図を示したものである。なお、 算術平均粗さは数値が小さいほど粒子表面は滑 らかであることを示し、内接真円度指数は数値

表-3 モルタルフロー値とフロー面積比「"

	フロー値の単位:mm														
		AP0		AP1		AP2		AP3		HN		HP		SS	
Vs	V _w /V _p	フロー値	$\Gamma_{\rm m}$	フロー値	Γ _m	フロー値	$\Gamma_{\rm m}$	フロー値	$\Gamma_{\rm m}$						
0.2	1.1	113.0	0.277	119.4	0.426	125.1	0.565	124.5	0.550	104.3	0.088	117.8	0.388	110.3	0.217
	1.2	135.9	0.847	144.3	1.082	159.2	1.534	148.7	1.211	107.2	0.149	138.8	0.927	127.1	0.615
0.2	1.3	169.0	1.856	172.9	1.989	189.4	2.587	175.6	2.084	115.4	0.332	163.8	1.683	146.8	1.155
	1.4	195.2	2.810	198.2	2.928	201.0	3.040	199.6	2.984	124.7	0.555	184.9	2.419	170.9	1.921
0.4	1.4	128.5	0.651	147.4	1.173	164.7	1.713	176.9	2.129	102.8	0.057	142.7	1.036	140.4	0.971
	1.6	166.6	1.776	188.3	2.546	201.8	3.072	210.8	3.444	115.9	0.343	174.5	2.045	171.3	1.934
	1.8	204.5	3.182	222.3	3.942	231.9	4.378	240.0	4.760	129.7	0.682	216.8	3.700	211.7	3.482
	2.0	227.1	4.157	256.3	5.569	258.2	5.667	261.9	5.859	142.0	1.016	245.0	5.003	231.2	4.345
	1.9	132.6	0.758	155.0	1.403	159.1	1.531	163.9	1.686	103.4	0.069	156.6	1.452	152.1	1.313
0.5	2.2	152.8	1.335	179.7	2.229	180.5	2.258	184.0	2.386	108.9	0.186	199.0	2.960	174.3	2.038
0.5	2.5	172.5	1.976	203.1	3.125	207.0	3.285	211.0	3.452	121.6	0.479	201.1	3.044	194.6	2.787
	2.8	208.7	3.356	237.3	4.631	238.7	4.698	239.7	4.746	144.4	1.085	222.8	3.964	216.4	3.683
0.52	2.0	118.5	0.404	133.3	0.777	142.4	1.028	151.4	1.292	100.4	0.008	150.2	1.256	116.8	0.364
	2.3	135.0	0.823	159.1	1.531	172.3	1.969	173.0	1.993	110.1	0.212	167.4	1.802	129.2	0.669
0.55	2.6	150.6	1.268	171.1	1.928	186.8	2.489	190.2	2.618	120.3	0.447	183.3	2.360	145.9	1.129
	2.9	167.4	1.802	189.2	2.580	208.9	3.364	212.1	3.499	131.4	0.727	200.8	3.032	167.9	1.819

図-2 安山岩研磨砕砂の「_mと V_w/V_pの関係

が0に近いほど、粒子は丸みを帯びていること を示す。これまでの研究結果から、算術平均粗 さRaは、研磨回数増加と共に減少し粒子表面 が滑らかになることが明らかとなっている。ま た、内接円真円度指数Rは研磨回数との相関性 はみられなかったが、一部の粒径範囲では値が 小さくなり、研磨処理によって粒子が丸くなる ことが明らかとなっている。

図-3より,研磨回数の増加にともない算術 平均粗さ Ra は減少し、粒子表面が滑らかにな っていることがわかる。また,研磨3回のAP3 では海砂 SS や原砂 APO より滑らかになってい る。この結果と対応し、研磨回数の増加にとも ない、変形係数 Esが減少している。AP3 は海砂 SS や原砂 APO よりも値が小さくなっている。 このように、変形係数 Esと算術平均粗さ Ra は 同様の傾向を示すことから,変形係数 E。を用い て粒子表面粗さを評価することが可能であると いえる。いずれの細骨材容積比 Vsにおいても, 算術平均粗さ Ra と、変形係数 Es との相関係数 が 0.85~0.9 程度の値となっており, 高い相関 がみられた。また,変形係数 Es と内接円真円度 指数 R との相関係数は小さく,相関関係は見ら れなかった。

既往の研究では、細骨材の拘束水比β_sは、絶 対拘束水比β_{s0}と細骨材の噛み合いによる変形 拘束水比からなるとされている。このうち、絶

表 -4 安山岩研磨砕砂の β_s および E_s

<u> </u>	٨	DΩ	٨	D1	Δ.	D٦	A D 2		
	A	F0	A		A	r 2 			
V _s	β _s	Es	β _s	Es	β _s	Es	β _s	Es	
0.2	0.1231	0.0315	0.0685	0.0111	0.0053	0.0099	0.0335	0.0158	
0.4	0.1749	0.0425	0.1484	0.0184	0.0786	0.0389	0.0210	0.0524	
0.5	0.2561	0.1466	0.2094	0.1141	0.1992	0.1185	0.1791	0.1313	
0.53	0.2356	0.3683	0.1909	0.2954	0.1902	0.2046	0.1632	0.2312	

算術平均粗さと E。の関係 (Vs=0.53)

図-4 内接真円度指数とβ_sの関係(Vs=0.2)

図-3

対拘束水比β_{s0}は次の式(4)で表される。

$$\beta_{s0} = SF \cdot PF \cdot HF \tag{4}$$

ここで、PF は粒径指数、SF は粒子の形状係 数、HF は分布形指数(= \sqrt{H})、H は粒度分布の 最高値の相対高さを表す。これらの PF、SF お よび HF は、粉体や細骨材にかかわらず、粒度 分布や粒子形状によって定まる値である。した がって、拘束水比 β_s を粒子形状評価の指標とし て用いることは、妥当であるといえる。

図-4より、研磨回数の増加とともに内接円 真円度指数 R は小さくなり、粒子形状が改善さ れたことを示すが、粒径によっては、研磨処理 を重ねても粒子形状が悪くなっている場合があ る。この結果同様、図-4のように、研磨回数 の増加とともに拘束水比β。は小さくなるが、細 骨材容積比 Vsによっては、研磨処理を重ねても、 拘束水比β。が大きくなる場合がある。また、拘 束水比β。と内接円真円度指数 R の相関係数は、 いずれの細骨材容積比 Vsにおいても、0.9 前後 の値となっており、高い相関がみられた。一方、 拘束水比β。と算術平均粗さ Ra との相関係数は 小さく、相関関係はみられなかった。したがっ て、拘束水比β。を用いて粒子形状を評価するこ とが可能であるといえる。

既往の研究より,細骨材の変形係数 E_sは,絶 対変形係数 *E_{s0}* と細骨材のかみ合いによる変形 係数から構成され,このうち絶対変形係数は次 の式(5)で表される。

$$E_{s0} = C \cdot PF \cdot SF + D \tag{5}$$

ここで、PF は粒径指数,SF は粒子の形状係 数,C は定数,D は粒子表面の状態を表す指標 (値が小さいほど粒子の表面は滑らかである)で あり,これらは,粉体や細骨材にかかわらず, 粒子表面の状態などによって定まる値である。 したがって,変形係数 E_sを粒子表面粗さの評価 指標として用いることは,妥当であるといえる。

以上より、これまでの研究で得られた範囲に おいて結果を検討すると、細骨材容積比 $V_s=0.5$ の場合において、変形係数 E_s が約 0.2 以下であ れば粒子の表面粗さが良好であり、拘束水比 β_s が約 0.2 以下であれば粒子形状が良好であり, 高い流動性が得られる細骨材であると評価でき る。

3.2 硬質砂岩砕砂の各試験結果

(1) フロー試験結果

表-3に各配合におけるモルタルフロー値と フロー面積比を、図-5に硬質砂岩砕砂の Γ_m と V_w/V_p の関係を示す。図中には、各細骨材容 積比における実験結果の一次回帰式もあわせて

表-5 硬質砂岩研磨砕砂の β_s および E_s

	Н	N	H	IP	SS		
Vs	βs	Es	βs	Es	βs	Es	
0.2	0.1093	0.4771	0.0553	0.0382	0.1071	0.0636	
0.4	0.2207	0.4244	0.1611	0.0257	0.1474	0.0477	
0.5	0.3209	0.4449	0.1362	0.1993	0.1615	0.1724	
0.53	0.2911	0.7337	0.1310	0.3283	0.2568	0.3230	

示す。一次回帰式の切片がモルタルの拘束水比 β_m ,傾きが変形係数 E_m を表している。

硬質砂岩砕砂の拘束水比 β_s および変形係数 E_sを表-5に示す。また、細骨材容積比 $V_s \geq \beta_s$ の関係を図-6に示す。この結果から、 β_s について、HN が最も値が大きく、研磨処理を施した HP は最も値が小さいことから、HP は研磨 処理によって粒子表面は滑らかになり、海砂同等もしくはそれ以上の良質な細骨材であると評価できる。

(2) モルタルの空気量測定結果

モルタルフロー試験時に行った空気量の測定 結果について図-7に示す。また、細骨材容積 比 $V_s=0.2$ の場合を例に挙げて、空気量とモルタ ルフロー値の関係を図-8に示す。図-7およ び図-8より、水粉体容積比の増加や研磨処理 を施すことによって、モルタルフロー値は増加 したにもかかわらず、空気量は研磨処理の有無 や水粉体容積比との相関性はみられなかった。 これは、図-7に示す細骨材容積比 $V_s=0.2$ 以外 の場合においても同様の傾向を示した。したが って、研磨処理の有無は、空気連行量への寄与 が小さいといえる。

4. 結論

研磨砕砂を細骨材に使用するため、より簡易 的な粒子性状の評価方法が必要であると考え、 細骨材容積比および水粉体容積比をパラメータ とするモルタルフロー試験を行った。

本研究で得られた結論を以下にまとめる。

- 細骨材の変形係数 E_sおよび拘束水比β_sは, 過去の研究で得られた粒子表面の粗さや粒子 形状の評価指標との,高い相関性が認められ たことから,骨材岩種の違いによらず,より 簡易な手法として研磨砕砂の粒子性状の評価 に適用可能である。
- 2) これまでの研究範囲では、変形係数 E_sが 0.2 以下、拘束水比β_sが 0.2 以下程度(細骨材容 積比 0.5 の場合)であれば、粒子性状が良好で あり、細骨材として用いた場合に十分な流動

性が得られる研磨砕砂であると評価すること ができると考えられる。

3) モルタルに連行される空気量は,研磨処理の 有無に影響されない。

参考文献

- 田畑美紀ほか:細骨材用研磨砕砂の品質評価, 骨材の品質と有効利用に関するシンポジウム 論文集, pp.7-12, 2005.12
- 2) 田畑美紀ほか:モルタルフローによる研磨砕 砂の粒子性状評価,コンクリート工学年次論 文報告集, Vol.27, No.1, pp.95-100, 2006.7
- 3) 山口昇三ほか: モルタルフロー値に及ぼす細 骨材特性の影響, コンクリート工学年次論文 報告集, Vol.16, No.1, pp.83-88, 1994.6