論文 実大 RC 内柱・梁接合部に関する実験的研究

高森 直樹*1·林 和也*2·佐々木 聡*3·寺岡 勝*4

要旨:柱・梁偏心接合を含む実大寸法の内柱・梁接合部部分架構実験を行い,得られた実験データの検討と実大に近い実験データを収集・分析し,接合部の耐震性能(耐力・損傷) および部分架構の変形性能への偏心取付きと部材寸法の影響について検討した。部分架構実験の結果,接合部の偏心側に変形と損傷が集中した。実験データの分析の結果,AIJ 靭性指針式では特に偏心取付きの柱梁接合部の終局せん断耐力を危険側に評価する場合が多いこと,筆者らの既往の提案式は接合部のせん断終局耐力を良好に評価できること,および接合部の耐震性能と部分架構の部材性能に与える寸法効果の影響は殆どみられないことが分かった。キーワード:鉄筋コンクリート,柱・梁接合部,耐震性能,寸法効果,偏心

1. はじめに

阪神・淡路大震災では,新耐震設計法により 設計された柱・梁接合部に顕著な被害を生じた 建物が多く見られた。その原因として, 柱に対 する梁の偏心取付きや, 寸法効果の影響が指摘 されている1)。この問題に対応するために、石 田・嶋らは柱・梁偏心接合を含む実大の内柱・ 梁部分架構実験を行い^{2),3)},偏心取付きによる せん断耐力への影響や寸法効果について検討し, 特に偏心取付きの接合部については AIJ 靭性指 針式⁴⁾では危険側の評価になるケースがあるこ と,接合部の損傷評価は寸法効果の影響が顕著 でないことを示した。一方、広沢らはねじりと 曲げせん断の破壊相関による方法で接合部耐力 への偏心の影響を検討し, 寸法効果の影響が見 られることを示した1)。なお、林・寺岡らは準実 大の部分架構実験結果に基づき同問題を扱い, 接合部のせん断ひび割れ耐力はせん断応力度と 捩りせん断応力度とを合成することで, また終 局せん断耐力は, 偏心距離を有効幅から減じる ことで簡易に評価できることを示した⁵⁾。

以上のことを踏まえ本研究では偏心接合部を 持つ実大試験体による部分架構実験を行い,本 実験データの検討および本実験データを含め既 往の実大に近い実験データを用いて、内柱・梁 接合部の耐震性能(耐力・損傷)および部分架 構の変形性能への偏心取付きおよび部材寸法の 影響の検討を行った。なお、本研究の一部を文献 6)に発表している。

2. 実験の概要

2.1 試験体および使用材料

内柱と梁からなる十字形 4 体で,その諸元, 配筋詳細を**表**-1,図-1にそれぞれ示す。NO1, NO2 は接合部の偏心率($=e/b_c$ e;偏心量, b_c ;柱

表一1 試験体諸元

試験体	NO1	NO2	NO4					
ペパン×階高	5500×2800							
梁幅×梁成	450×900	380×900	450×900	450×900				
主筋 (SD390)	4-D32+2-D29	3-D32+3-D32	4-D32+2-D29	4-D35+4-D32				
pt 上引/下引[%]	1.30/1.23	1.68/1.59	1.30/1.23	2.07/1.97				
肋筋(SD295A)	4-D10@100	3-D10@50	4-D10@100	4-D13@90				
p _w [%]	0.63	1.12	0.63	1.25				
柱幅×柱成	700×700							
主筋 (SD390)								
帯筋(SD295A)	[⊞-D13,D10@55						
p _w [%]		1.03						
σ_0 =N/B _c D _c	10.0N/mm ²							
	85	125	0	0				
扁芯率e/b。)	(0.121)	(0.178)	U	0				
せん断補強筋	□ D13@60 < pw = 0.60 >							
せん断耐力余裕度*)	1.19	1.02	1.40	1.02				
	ペパン×階高 梁幅×梁成 主筋 (SD390) P. 上引/下引[%] 肋筋 (SD295A) Pw [%] 柱幅×柱成 主筋 (SD390) 帯筋 (SD295A) Pw [%] の _の =N/B ₂ D _c の(偏心量 e[mm] 晶芯率e/b _c) せん断補強筋	Xパン×階高 梁幅×梁成 450×900 主筋 (SD390) 4-D32+2-D29 p. 上引/下引[%] 1.30/1.23 肋筋 (SD295A) 4-D10@100 pw [%] 0.63 柱幅×柱成 2 主筋 (SD390) 世隔 (SD295A) [pw [%] 0 0 0 0 0 0 0 0 0	S500 S500 S500 Ref Ref	X・A・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・				

^{*)} $\tau_{\rm nu}/\tau_{\rm phu}$

 $(\tau_{pu}$:接合部の終局せん断強度 (寺岡らの提案式(平均値式) 5,7) τ_{pbu} :AIJ 略算式による梁曲げ耐力時の接合部せん断応力度)

^{*1} フジタ 技術センター,主任,修士(工学)(正会員)

^{*2} フジタ 技術センター, 主任研究員 (正会員)

^{*3} フジタ 技術センター, 主任研究員, 博士(工学)

^{*4} フジタ 技術センター, 副所長, 博士 (工学) (正会員)

幅)が 0.118, 0.176 の偏心を持つ試験体で, NO3, NO4 は偏心のない試験体である。NO4 はせん断余裕率を NO2 の接合部の偏心側と等しくし, 偏心の影響を検討する。表-2,表-3にコンクリートおよび鉄筋の力学的性能を示す。コンクリートは,梁をプレキャストとし,下柱と組み合わせた後,接合部および上柱を縦打ちした。

2.2 実験方法

加力は、柱に一定軸圧 σ_0 (=軸力/柱断面 =10N/mm²)を与え、両梁端に逆対称の正負交番繰返し漸増載荷を行った。偏心を有する試験体は、梁の加力点および柱の支持点位置で捩れを生じないように支持し載荷を行った。

2.3 実験結果の概要

行する(F)S型であった。

表-4に主要な実験結果を一覧にして示す。 図-2に柱せん断力(Qc)と層間変形角(Rt)関係履歴曲線,図-3に実験終了時の接合部のひび割れ状況例,図-4に梁と接合部の変形角の計測方法、図-5に右梁のせん断力(Qb)-梁変形角(Rb)関係履歴,図-6に接合部せん断力(Qp)-接合部せん断変形(γ)関係履歴,図-7に層間変形に占める各部材の変形割合をそれぞれ示す。表-4中に各耐力の実験値と計算値との比較(実験/計算)を示した。計算値は脚注の式を用い求めた。また梁が AIJ 略算式による曲げ耐力を維持する層間変形角を層間限界変形角(Rtu)と定義し、示した。破壊モードは、NO1、NO3 が梁降伏後の接合部せん断破壊型(FS型)であり、NO2、NO4 が、梁降伏直後に接合部のせん断破壊が進

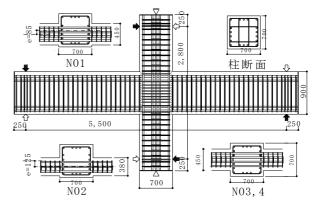


図-1 試験体図

表-2コンクリート試験 表-3 鉄筋試験

コンクリート	$\sigma_{\scriptscriptstyle B}$	εΒ	Ec	σ_{t}	鉄筋	σу	Es	σu	伸び%
梁 NO 1	49.6	2839	3	4.06	D35	436	19.1	650	22.3
梁 NO 2, 3	43.4	2608	2.5	3.96	D32	435	18.8	513	22.2
梁 NO 4	50	2814	2.49	3.34	D29	430	18.8	623	17.2
下柱	48	2747	2.7	4.23	D13	340	17.2	490	25.6
接合部・上柱	48	2813	2.7	4.18	D10	334	17.1	472	27.4

 σ_B :圧縮強度、 σ_t :割裂強度、 $[N/mm^2]$, σ_y :降伏点、 σ_t :引張強さ $[N/mm^2]$ ε_B :同左ひずみ度 $[\mu]$ E_C :ヤング 係数 $[10^4\ N/mm^2]$ 、 E_S : ヤング 係数 $[10^5\ N/mm^2]$

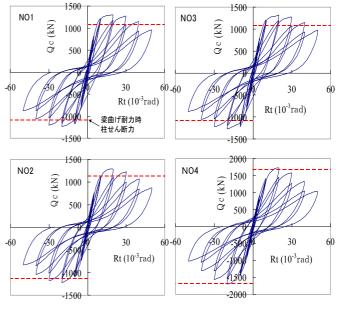


図-2 層せん断力-層間変形角関係

表-4 実験結果一覧

	27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7															
試験体	正負	左對	22最大荷重	重時	右導	公最大荷重	重時	接合部せ	ん断ひひ	ぎ割れ	接合部最大せん断強度時			層間限界		
		実験値		実験	実験値		_実験_	実際	険値	実験	実際	険値	実験	_実験_	実験値	破壊
		Q_{bL}	R_{bL}	計算1	Q_{bR}	R_{bR}	計算1	Q_{pcr}	γ _{per}	計算2	Q_{pm}	γ _{pm}	計算3	計算4	Rtu	モート
NO1	+	666	13.42	1.24	663	13.0	1.17	2086	0.56	0.80	3342	4.56	0.78	0.99	44.7	FS
	-	619	-6.79	1.09	636	-6.8	1.18	1654	-0.30	0.64	3153	-5.62	0.74	0.94	-40.1	гэ
NO2	+	665	8.12	1.12	657	8.8	1.17	1464	0.37	0.56	3301	4.93	0.82	1.07	37.0	(F)S
	-	612	-3.20	1.09	634	-4.0	1.07	1535	-0.26	0.59	3135	-8.31	0.78	1.02	34.7	(1)3
NO3	+	674	15.61	1.19	663	17.2	1.23	2424	1.03	0.93	3357	4.87	0.78	0.85	44.7	FS
	-	636	-14.69	1.18	660	-14.7	1.17	2427	-0.76	0.94	3275	-5.55	0.77	0.83	37.7	61
NO4	+	887	8.25	1.01	883	9.7	1.06	2457	0.81	0.95	4423	9.83	1.03	0.97	23.5	(F)S
	-	861	-7.93	1.03	868	-7.9	0.99	2369	-0.46	0.91	4320	-11.3	1.01	0.95	-20.0	

<単位>:Q(kN), R(10³rad.) <実験値> $Q_p = \Sigma M_b/j_b - Q_c$, $j_b = 7d_b \sqrt{8}$ <破壊モード>FS:梁降伏後の接合部せん断破壊、(F)S:梁降伏とほぼ同時に接合部せん断破壊 計算 1:AIJ 曲げ耐力略算式 8)、計算 2:主応力度式 $Q_b = \sqrt{f_t^2 + f_t \cdot \sigma_0} \times b_c \cdot j_c$ $f_t = 0.501 \sqrt{\sigma_B}$,計算 3:靭性指針式 4) $V_{\mu} = \kappa \phi F_b / b_j D_j = 1.0 \cdot 0.85 \cdot 0.8 \cdot \sigma_s^{0.7} \left(b_b + b_{a1} + b_{a2}\right)$ 計算 4:寺岡らの提案式 5 , 7 0。 7 2 7 3 7 4 7 4 7 5 7 6 7 6 7 7 7 8 7 9

図-2 より NO2, NO4 は、NO1, NO3 に比べて最大耐力後の耐力低下が大きい。接合部のせん断ひび割れの発生は、NO1, NO2 の偏心側が、NO3, NO4 に比べて早く、また NO1, NO2 では、偏心側面に損傷が集中した(図-2参照)。これは接合部の変形が偏心側に集中したことと対応している(図-6参照)。

図-5より、破壊モードが FS 型の NO1、NO3 は梁降伏後に梁の塑性変形が増大しているのに対して、(F)S 型の NO2、NO4 は殆ど梁の塑性変形が進んでいない。また、NO1、NO3 は梁の変形割合が大きく、NO2、NO4 は接合部の変形割合が大きい(図-7参照)。なお、NO4 は接合部のせん断余裕率を NO2 の偏心側と等しくした試験体であるが、梁および層間の各変形性能ともに NO2 が NO4 に比べて若干良好であった。

3. 偏心の影響の検討

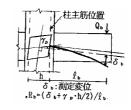
3.1 偏心を考慮したせん断ひび割れ応力の検討

偏心接合部のせん断ひび割れ発生には,接合部せん断応力度 τ_{per} と,接合部の捩りモーメント M_T による捩りせん断応力度 τ_T とを合成したせん断応力度 τ_0 が作用すると考えた $^{5)}$ 。 τ_T を,弾性論 9 に基づき,以下の式(1)により求めた。

 $au_T = 4.73 \times M_T/D^3 = 4.73 \times Q_P \cdot e'/D^3$ (1) e'は柱芯と梁芯の偏心量、Dは柱成(D_c)である。合成せん断応力度 τ_0 は以下の式(2)になる。

 $au_{0\pm} = au_{pcr} \pm au_{T} (+;偏心側面,-;裏面)$ (2) 表 -5 に式(2)より求めた合成せん断応力度の偏心側 (au_{0+}) と裏面 (au_{0-}) の値と主応力度式により求めたひび割れせん断応力度の計算値の比較を示す。偏心側面の実験値と計算値との対応は,従来の検討結果 5 と同様に良好である。

3.2 接合部の捩れ角と接合部の表裏のせん断変 形角の関係


偏心のある NO1, NO3 において、接合部の捩れ角(γ_{tor})を接合部と梁の取付き面で図-8中に示すように測定した。図中に測定された捩れ角と、接合部せん断変形角の偏心側面と裏面の差を比較した図を示す。両者がほぼ近い履歴であ

偏心側面

裏面

図-3 終了時接合部ひび割れ状況時(NO2)

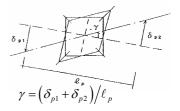


図-4 梁変形角 R_nと接合部変形角 γ の測定方法

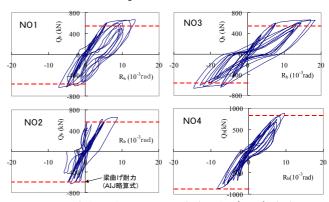


図-5 右梁の梁せん断力(Q_h)-梁変形角(R_h)

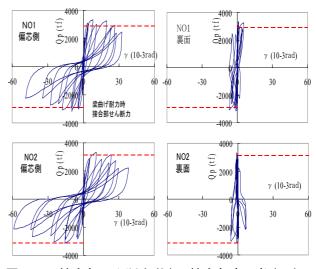


図-6 接合部せん断力 (Q_n) -接合部変形角 (γ_n)

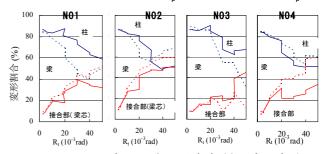


図-7 層間変形に占める各部材の変形割合

り、捩れ角の測定方法が妥当であったと考えられる。図-6および図-8により、偏心取付き接合部において接合部の変形特性および損傷に与える偏心の影響は極めて大きいことが分かる。

実験値との適合性がよく、また部材寸法および 偏心量の違いによる適合性の差異が殆どみられ ない。一方、AIJ 靭性指針式は、特に偏心のある

4. 耐震性能への部材寸法の影響の検討

4.1 対象試験体

検討対象試験体は本実験の 4 体を含め 26 体である $^{2)}$ $^{(5)}$ $^{(10)}$ $^{(15)}$ 。 その諸元は,1.柱寸法: b_c \times D_c = $50 \times 50 \sim 90 \times 87$ (cm \times cm),2.梁寸法: b_b \times D_b = $30 \times 50 \sim 58 \times 90$ (cm \times cm),3.梁・柱偏心量 $e:0 \sim 13.5$ (cm)率: e/b_c = $0 \sim 0.179$,4.主筋比 柱: ep_t = $0.32 \sim 0.93$ (%),梁: ep_t = $0.85 \sim 3.04$ (%),5.接合部 横補強筋比: ep_t = $0.22 \sim 1.51$ (%),6.コンクリート強度 ep_t = ep_t

4.2 接合部パネルの終局せん断耐力の検討

図-9に、接合部パネルの終局せん断耐力について、寺岡らの提案式 $^{5),7)}$ およびAIJ 靭性指針式 $^{4)}$ による計算値 $({}_{c}Q_{pu})$ と実験値 $({}_{e}Q_{pu})$ とを比較して示す。寺岡らの提案式は靭性指針式に比べて

表-5 接合部の合成せん断応力度実験値とせん 断ひび割れ応力度の計算値

			実駅	険値	計算値	実験値/計算値			
		$\tau_{ m pcr}$	τΤ	τ 0+	τ 0-	c τ per	τ ₀₊ / _c τ _{pc:}	$\tau_{0-}/_{c} \tau_{pcr}$	
		$\mathrm{N/mm}^2$	$\mathrm{N/mm}^2$	$\mathrm{N/mm}^2$	$\mathrm{N/mm}^2$	$\mathrm{N/mm}^2$	偏心側	裏面	
NO1	正	5.49	2.45	7.94	3.05	6.83	1.16	0.45	
	負	4.36	1.94	6.29	2.42	6.83	0.92	0.35	
N02	正	3.86	2.52	6.38	1.33	6.83	0.93	0.19	
	負	4.04	2.65	6.69	1.40	6.83	0.98	0.20	

 τ_{pcr} ;接合部せん断ひび割れ応力度, τ_T ;捩りせん断応力度,

τ 0+; 合成せん断応力度(+;偏心側面,-;裏面)

c т рег; 主応力度式により求めた接合部せん断ひび割れ応力度

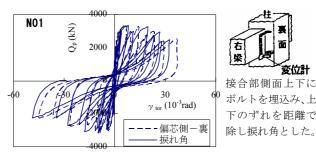
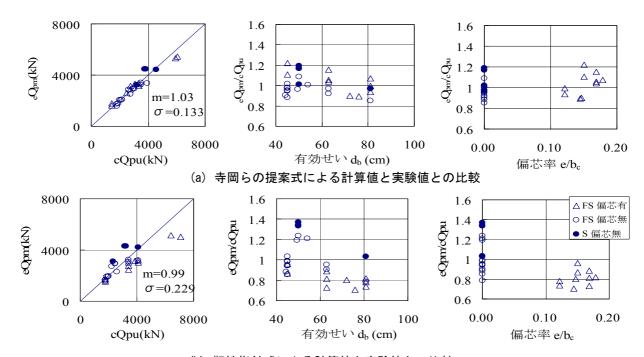



図-8 接合部捩れ角と接合部の偏芯側と裏面 でのせん断変形角の差との関係

(b) 靭性指針式による計算値と実験値との比較

図-9 接合部パネルの終局せん断耐力の実験値と計算値との比較

柱・梁接合部の終局せん断耐力を危険側に評価 する傾向がみられる。

4.3 接合部パネルの損傷状況の検討

(1) 部材寸法によるせん断ひび割れ性状

表-6の上段に、文献 16)で示した模型試験体(33 体)の接合部せん断ひび割れ状況についてフラクタル次元解析結果と接合部変形角 γ_p との関係模式図を示し、下段に本実験結果(NO3)を比較して示す。寸法の違いによるひび割れ本数などの損傷レベルの差はあまり見られない。

(2) 最大せん断ひび割れ幅とせん断変形角の関係

図-10は、本実験と嶋らの実大実験の結果 $^{3)}$ とフジタで過去に行われた $^{1/2}$ ~ $^{1/3}$ 縮尺の模型 試験体の結果 $^{16)}$ について、最大せん断ひび割れ幅 (w_p) 一接合部せん断変形角 (γ_p) との関係を示す。偏心接合部は偏心側面でのせん断変形角を用いた。実験結果はかなりばらついているが、 w_p — γ_p 関係はほぼ線形関係にある。実大と模型試験体を比較すると、ひび割れ幅は部材寸法にほぼ比例し、寸法効果の影響は殆どみられない。偏心試験体は偏心無し試験体に比べて、ひび割れ幅が小さい。これは偏心の影響で、ひび割れが柱幅を貫通しないで、偏心側面の部分的なひ

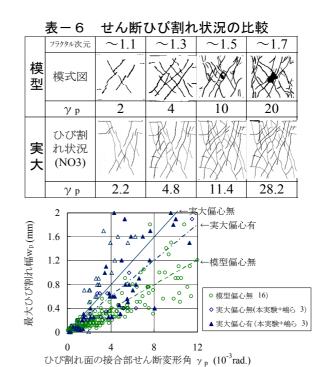


図-10 接合部せん断変形角 (γ_0) -最大ひび割れ幅

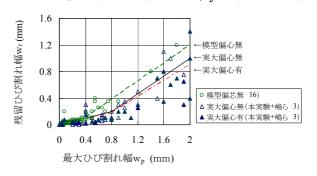


図-11 最大ひび割れ幅 (w_p) - 残留ひび割れ幅 (w_r)

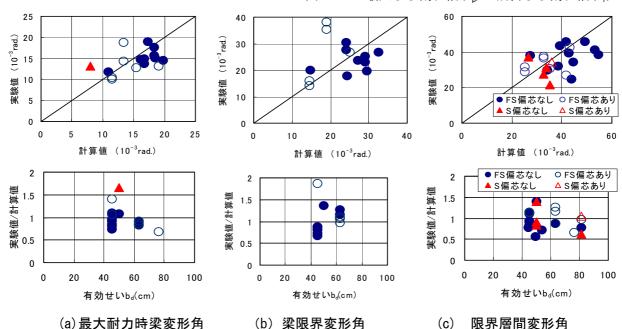


図-12 各変形性能についての実験値と寺岡らの提案式による計算値の比較

び割れとなるためにひび割れ幅が小さくなったと考えられる。

(3) 最大ひび割れ幅-残留ひび割れ幅の関係

図-11は、ピーク時の最大せん断ひび割れ幅 (w_p) 一残留せん断ひび割れ幅 (w_r) との関係を示す。模型試験体で w_p が0.4mm,実大試験体で0.8mmの点で傾きが変化し、模型と実大とは部材寸法にほぼ比例した関係にあり、寸法効果の影響は殆どみられない。なお、 w_p が模型で0.4mm,実大で0.8mmの点は γ_p が 4×10^{-3} rad.付近でコンクリートの圧壊が始まる点に対応している。

4.4 変形性能の検討

図-12に、最大荷重時梁変形角 R_{bm} 、梁限界変形角 R_{bu} と層間限界変形角 R_{Tu} について、1/2 $\sim 1/3$ 縮尺寸法模型を対象とした以下に示す寺岡らの提案式 17 による計算値と実験値を比較した。

$$_{c}R_{bm} = 0.013 \{0.51 + 0.42 (_{b}\sigma_{v}/4)\} (\tau_{pu}/\tau_{pbu})^{1.51}$$
 (3)

$$_{c}R_{bu} = 0.00173 \left(\tau_{pu}/\tau_{pbu}\right)^{2.07}$$
 (4)

$$_{c}R_{Tu} = 0.0326 \left(0.763 + 0.0076 p_{w} \cdot _{w} \sigma_{y}\right) \left(\tau_{pu} / \tau_{pbu}\right)^{1.3}$$
 (5)

ここで $_{b}\sigma_{y}$ は梁主筋降伏点 $[N/mm^{2}]$ 、 $_{p_{w}}$ は横補 強筋比[%]、 $_{w}\sigma_{y}$ は横補強筋降伏点 $[N/mm^{2}]$ である。 提案式で概ね部分架構の梁および層間の各変 形性能について予測することができ,有効せい と実験値/計算値の関係より変形性能への寸法効 果の影響は殆どみられないかった。

5. まとめ

以上の検討結果より,以下に示す知見を得た。

- (1) 偏心による捩りモーメントの影響により、接合部の偏心側は損傷が集中してせん断変形が進むが、裏面はほとんど変形しなかった。
- (2) AIJ 靱性指針式は、特に偏心取付きの柱梁接合部の終局せん断耐力を危険側に評価する場合が多いので注意が必要である。
- (3) 筆者らの既往の提案式により、接合部のせん 断耐力を良好に評価できた。
- (4)接合部の耐震性能(耐力,損傷)および部分架構の変形性能に与える寸法効果の影響は殆ど

みられなかった。

参考文献

- 日本建築学会:阪神淡路大震災と今後のRC構造設計,1998年10月.
- 2) 石田健吾,嶋晃平,東健二,藤井栄:鉄筋コンクリート 十字型接合部部の実大実験,コンクリート工学年次論 文報告集, Vol.23-3, pp.343-348, 2001 年 6 月.
- 3) 嶋晃平, 石田健吾, 佐藤裕一, 藤井栄: 実大実験に基づく接合部の損傷評価と寸法効果に関する考察, コンクリート工学年次論文報告集, Vol.23-3, pp.349-354, 2001年6月.
- 4) 日本建築学会:鉄筋コンクリート造の靭性保証型耐 震設計指針・同解説、1999年.
- 5) 林和也, 狩野芳一, 寺岡勝, 他: 梁芯が柱芯に偏芯接合した内部柱・梁接合部に関する実験研究, コンクリート工学年次論文報告集, Vol.13-2, pp.507-512, 1991年6月.
- 6) 寺岡勝, 佐々木聡, 林和也, 高森直樹: RC 造実大内柱・梁偏心接合部の耐震性能に関する実験的研究 (その1,その2),日本建築学会学術講演梗概集(東海), 2002 年.
- 7) 寺岡勝, 狩野芳一, 小林勝巳, 鉄筋コンクリート造 内部柱・梁接合部のせん断強度に関する調査及び検 討一普通コンクリートを用い, 直交梁のない場合一, 構造工学論文集, Vol.37B, 1991年.
- 8) 日本建築学会:鉄筋コンクリート構造計算規準・同解説,1999年.
- 9) 小野薫:応用弾性学の基礎, コロナ社, 1958年.
- 10) 鐘栄真,向井良逸,中田慎介,伊藤勝: PRC 柱梁接 合部の実験的研究(その1),日本建築学会大会学術講 演梗概集(東北),pp.1291-1292,昭和48年10月.
- 11) 東京大学梅村研究室:D51 を用いたはり・柱接合部の 実験的研究,昭和49年度,昭和50年度報告書.
- 12) 伊藤勝, 山田敏夫, 最上達雄, 是永健好: RC 造積 層工法に関する構造実験(その2), 日本建築学会大会 学術講演梗概集(九州),pp.1717-1718, 昭和56年9月.
- 13) 山田敏夫, 伊藤勝: R C 造積層工法に関する構造実験(その 4), 日本建築学会大会学術講演梗概集(北海道), pp.181-182, 昭和61年8月.
- 14) 長島俊雄, 菅野俊介, 木村秀雄, 吉岡研三, 別所佐登志, 稲田泰夫, 吉崎征二:高層RC造建物の柱一はり接合部に関する実験的研究, 日本建築学会大会学術講演梗概集(北海道), pp.347-348, 昭和61年
- 15) 寺岡勝, 狩野芳一, 藤原敏夫, 林和也, 内田和弘, 胡木清人,: 鉄筋コンクリート造十字形柱・はり接合部の力学的性状に関する研究(その8), 日本建築学会大会学術講演梗概集, pp.607-608, 1991年9月.
- 16) 寺岡勝, 林和也, 佐々木聡, 高森直樹:鉄筋コンク リート造内部柱・梁接合部のせん断挙動と損傷の評 価, 日本建築学会大会学術講演梗概集, pp.805-810, 2000年9月.
- 17) 寺岡勝, 狩野芳一, 佐々木聡, 林和也:鉄筋コンクリート造内柱・梁部分架構の変形性能の評価,材料, Vol.45,No.9,pp.1033~1041,1996年9月.