論文 既存RC 造建物を制振補強する場合の設計法の提案

西川 和明*1・前田 匡樹*2

要旨:本研究は耐震性能が劣る既存RC 造建物に粘性・粘弾性ダンパーを組み込むことで制振補強する際の設計法に関する研究である。制振補強建物の耐震診断指標I。値をダンパーによる付加減衰を用いて評価し,従来型耐震補強と同様に耐震診断基準に基づいた制振補強設計法を提案した。提案した設計法で制振補強した建物と従来型の耐震補強建物との応答を比較することにより,本設計法の妥当性を検証した。

キーワード:耐震補強,耐震診断指標,粘弾性ダンパー,等価粘性減衰

1. はじめに

既存建物に粘性・粘弾性ダンパーを取り付けることにより、エネルギー吸収性能を高めることで耐震性能を向上させる制振補強の研究・開発が行われてきた¹)。この補強方法は従来の鉄骨ブレースなどを用いて建物の強度や変形制御性能を高める補強法とは異なり、建物に減衰効果を付加することでエネルギー吸収を行い、建物の変形を抑制させる応答制御型の補強法である。従来の耐震補強の設計では、耐震診断²)で得られた構造耐震指標 Is 値に基づいて、必要な強度や変形制御性能などの補強量を算出する。それに対し、制振補強された建物の場合、耐震診断基準に対応した補強設計法が確立されておらず、耐震安全性は時刻歴応答解析により検討するのが一般的である。

そこで本報ではまず,制振補強した建物の等価粘性減衰をダンパー,ブレース,建物の剛性比に基づいて評価し,剛性比が等価粘性減衰に及ぼす影響を調べた。また,ダンパー設置による付加減衰に対応した耐震診断指標 I_s 値の増加率を表す指標として耐震性能割増係数 D(h)を定義することにより,地震応答解析を行わずにダンパーの必要補強量を算出する設計法の検討及び検証を行った。

2. 粘弾性ダンパー補強建物

2.1 粘弾性体の力学特性

ダンパーは、図・1のような復元力特性を有しており、その力学特性やエネルギー吸収能力 (損失係数)は温度・振動数・振幅に依存することが既往の研究³⁾で報告されている。

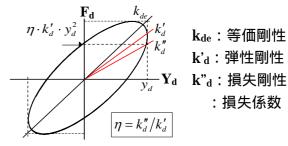


図 - 1 粘弾性体の力学的特性

2.2 等価剛性・等価粘性減衰

粘弾性ダンパーの等価剛性 kde は図 - 1より,複素剛性の絶対値として式(1)で定義されている。ダンパー補強建物を1質点系にモデル化すると,既存建物と支持部材・ダンパーがそれぞれ並列に,支持部材とダンパーが直列の関係となる。ここで,等価線形化法では等価減衰と等価剛性を有する等価線形系で最大応答を模擬するものである。よって,系全体の等価剛性 ke は最大変形時の剛性として,式(2)で定義する。

^{*1} 東北大学大学院 工学研究科 都市·建築学専攻 (正会員)

^{*2} 東北大学大学院 工学研究科 都市·建築学専攻 助教授 工博 (正会員)

$$k_{de} = \left| k_d^* \right| = \sqrt{k_d'^2 + k_d''^2} = k_d' \sqrt{1 + \eta^2} \tag{1}$$

$$k_e = k_f + \frac{1}{1/k_b + 1/k_d'} \tag{2}$$

このとき既存建物の等価剛性を k_f , ブレース の剛性を k_h とする。

また,支持部材の鉄骨ブレースは弾性と仮定して,粘弾性ダンパーの履歴吸収エネルギーをWdとして,系全体のポテンシャルエネルギーをWとする。粘弾性ダンパーを用いて耐震補強した建物における,ダンパーを設置したことによる等価粘性減衰の増加分dheqは式(3)で表される。

$$_{d}h_{eq} = \frac{1}{4\pi} \cdot \frac{\Delta W_{d}}{W} = \frac{\eta k_{d}' y_{d}^{2}}{2k_{a} y^{2}}$$
 (3)

ここで,支持部材とダンパーは直列の関係にあり,その変形の比 y_b : y_d は剛性の逆比 k_b : k_{de} に対応していることが既往の研究 $^{4)}$ より分かっている。よって、ダンパーの変形は全体の変形より支持部材とダンパーの剛性の比 k_b : k_{de} を用いて式(4)のように表すことができる。

$$y_d = \frac{k_b}{k_b + k_{de}} \cdot y = \frac{1}{1 + \sqrt{1 + \eta^2} k_d' / k_b} \cdot y \tag{4}$$

よって,等価粘性減衰の増加分 $_{\rm d}h_{\rm eq}$ は式(5)に示すようにダンパー・支持部材・建物の剛性の比 k_a'/k_b , k_a'/k_f で表すことができる。

$$_{d}h_{eq} = \frac{1}{4\pi} \cdot \frac{\Delta W_{d}}{W} = \frac{\eta \cdot \left(\frac{1}{1 + \sqrt{1 + \eta^{2} k_{d}^{\prime} / k_{b}}}\right)^{2}}{2 \cdot \left(\frac{1}{k_{d}^{\prime} / k_{f}} + \frac{1}{1 + k_{d}^{\prime} / k_{b}}\right)}$$
(5)

図 - 2にはダンパー・支持部材の剛性比 k'_a/k_b と等価粘性減衰 $_ah_{eq}$ の関係を示す。本報ではアクリル系粘弾性体材料の粘弾性ダンパーを対象とし, $_kk'_a$,の値は笠井らにより提案されている算出式 $_3$ を用いて基準温度 20 の場合で検討した。図 - 2より等価粘性減衰 $_ah_{eq}$ は極大値を持つ

ことがわかり,粘弾性ダンパーの減衰性能は剛性比 k_a'/k_b に影響される。 $_{\rm d}h_{\rm eq}$ は $_{k_b}/k_f$ の値によって異なるものの,いずれの場合も概ね $_{k_a}/k_b$ が 0.3 付近で極大値となる。よって本報では,粘弾性ダンパーの減衰効率を考慮して剛性比が $_{k_a'}/k_b \le 0.3$ の範囲で設計を行うこととする。

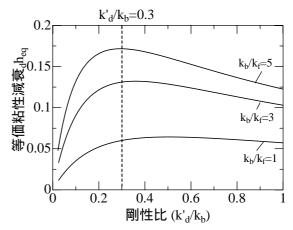


図 - 2 等価粘性減衰と剛性比の関係

3. 制振補強設計法

3.1 耐震診断基準に基づく補強概念

従来型の補強では目標の Is 値に対して,耐震壁や鉄骨ブレースなどを既存建物のフレーム内に増設することにより,建物の保有水平耐力を高めるといった強度型の方法や,既存建物の独立柱の周りを RC や FRP で巻立たり,接続する腰壁等との間に耐震スリットを入れるなどして建物の変形性能を高める靭性型の方法が考えられる。

制振補強では従来型の様に,建物本体の強度や靭性を高めて補強する概念は当てはまらない。制振補強では図・3に示すように,ダンパーのエネルギー吸収能力により系全体の減衰が増加した分,みかけ上 Is 値が増加したとみなす概念が当てはまる。そこで減衰の増加に伴う Is 値の増加率を表す値として耐震性能割増係数 D(h)を式(6)のように定義する。

$$D(h) = {}_{r}I_{s}/{}_{0}I_{s} \tag{6}$$

。*I_{s*:未補強時の耐震診断指標 、*I*_s:補強後の耐震診断指標} ここで D(h)とは,限界耐力法で任意の減衰定数における線形応答スペクトルを求める際に用いられている減衰補正係数 f(h)の逆数に相当するものと考えられ,制振ディバイスにより付加される等価粘性減衰 $_{d}h_{eq}$ を用いて求まる係数とする。

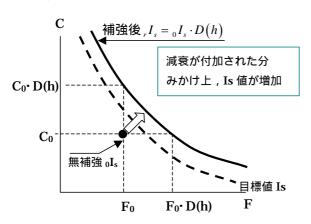
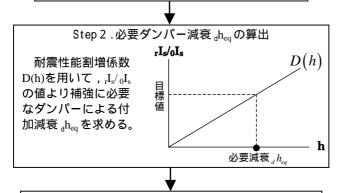



図 - 3 制振補強(粘性ダンパー補強)概念図

3.2 設計手法

まず, 粘性ダンパーで補強を行う際の設計法について示す。図 - 4のチャートにも示すように, D(h)を用いて必要減衰 $_{d}h_{eq}$ を求め, それより粘性減衰係数 $_{d}C$ を算出できる。

Step 1 . 既存建物の耐震診断 既存建物の耐震診断指標 ₀I_s(強度指標 C , 靭性指標 F)の算出。補強目標値の ₂I_sを決定する。

Step 3 . 粘性ダンパーの粘性減衰 $_{\rm d}$ C $_{_d}$ C = $2\cdot_d$ $h_{eq}\cdot\omega_e\cdot m$ の関係を用いて粘性減衰係数 $_{\rm d}$ C を算出する。このとき , ${\rm k_f}$ は既存建物の F 値に対応した等価剛性である。

$$\omega_e = \sqrt{\frac{k_f}{m}} \cdot \sqrt{\frac{2(1+k_b/k_f)}{2+k_b/k_f}}$$
 : 系全体の共振振動数

図 - 4 粘性ダンパー補強の設計チャート

次に粘弾性ダンパーで補強した際の設計法を以下に示す。粘弾性ダンパーのように剛性を有するダンパーの場合,図 - 5 に示すように付加減衰により I_s が増加する効果だけではなく耐力上昇による効果も考慮する必要がある。

まず,粘弾性ダンパーで補強した際の耐震診断指標,Isは,式(7)で表される。

D(h):付加減衰による耐震性能割増係数

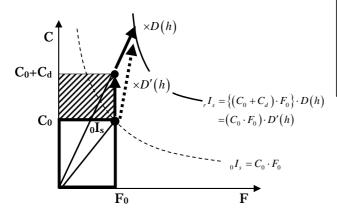
D(h): 付加減衰・耐力上昇を考慮した耐震性能割増係数

ここで, F_0 は既存建物の靭性指標であり, $_0$ Qu は既存建物の保有水平耐力であり, $_d$ Qu は靭性指標 F_0 に相当する変形での粘弾性ダンパーの耐力である。式(7)の両辺を $C_0 \cdot F_0$ で除すと,式(8)が得られる。

$$D'(h) = (1 + C_d/C_0) \cdot D(h)$$
(8)

このとき , C_a/C_0 は剛性比 k_a'/k_b , k_a'/k_f を用いて以下の式(9)で表す事ができる。

$$\frac{C_d}{C_0} = \frac{\left(k_b \cdot k_d' / (k_b + k_d')\right) \times y / mg}{k_f \times y / mg} = \frac{1}{1 + k_d' / k_b} \cdot \frac{k_d'}{k_f}$$
(9)


このとき , k'_d/k_f は等価粘性減衰の式(5)より $_{
m d}{
m h}_{
m eq}$ を用いて式(10)で表す事ができる。よって , ${
m D'}({
m h})$ は式(11)のようになる。

$$\frac{k_d'}{k_f} = \frac{2_d h_{eq} \left(1 + k_d' / k_b\right)}{\eta \left(\frac{1}{1 + \sqrt{1 + \eta^2} k_d' / k_b}\right)^2 \left(1 + k_d' / k_b\right) - 2_d h_{eq}}$$
(10)

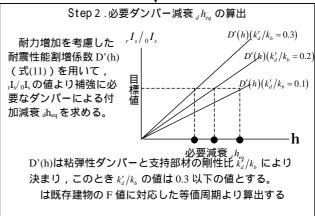
$$D'(h) = \left(1 + \frac{2_{d} h_{eq}}{\eta \left(1/1 + \sqrt{1 + \eta^{2}} k'_{d}/k_{b}\right)^{2} \left(1 + k'_{d}/k_{b}\right) - 2_{d} h_{eq}}\right) \cdot D(h)$$
(11)

このとき k_a'/k_b は粘弾性ダンパーの有効な減 衰効率を考慮して 0.3 以下の値で設計時に任意 に決める値であり、 は既存建物の靭性指標 Fo に対応した等価周期より算出する。

粘弾性ダンパーで補強する際には以上に示し たように耐力上昇を考慮した耐震性能割増係数 D'(h)を用いて設計を行う。図 - 6 に設計手順を 示す。

粘弾性ダンパー補強の概念図 図 - 5

4.耐震性能割増係数 D(h)の算定


4.1 検討解析概要

前節で定義した耐震性能割増係数 D(h)を地震 応答解析より算定する。解析対象とした既存建 物は同じ復元力特性を有するものとし、質量の みを変化させて周期 T=0.2, 0.5, 1.0, 1.5 秒の場 合について検討を行った。

粘性ダンパー補強の場合、支持部材は完全な 剛体とし,単にダッシュポットのみを付加させ た単純なモデルとした。粘弾性ダンパーの支持 部材である鉄骨ブレースは常に弾性とし,ブレ ースと建物との剛性比を $k_b/k_f = 1.5$ の 2 種類で 行った。

解析に用いた地震波は実測波と模擬波をそれ ぞれ2波づつ用いた。実測波はEl Centro NS波, 神戸海洋気象台 NS 波の 2 波を用いた。また模擬 波は建築基準法告示の設計用応答スペクトルを 基に作成し、「入力レベルは極めて稀に起こる地 震動」とし,地盤は第二種地盤を想定した。主 要動が8秒のものを長波3秒のものを短波とし た。加速度応答スペクトルを図 - 7に示す。

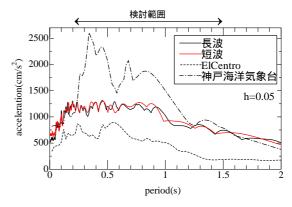
Step 1. 既存建物の耐震診断 既存建物の耐震診断指標 oI。(強度指標 C, 靭性指標 F) の算出。補強目標値の、I、を決定する。

Step 3.補強建物のダンパー剛性 k'd を決定する。 Step 2 より求めた必要減衰 $_{\mathrm{d}}\mathrm{h_{eq}}$ 剛性比 k'_{d}/k_{b} の値を用いて式 (10)より粘弾性ダンパーと建物の剛性比 k'_d/k_f の値を求め、 ダンパー剛性 k'dを決定する。

Step 4. 支持部材剛性 kb が求まる。 剛性比 k'_a/k_b とダンパー剛性 k'_a より支持部材の剛性 k_b が求 まる。

Step 5. 補強ダンパー量を求める。 $k'_d = G'(\omega_s) \times S/d$ よりダンパーの量(S/d)を算出する。

 $G'(\omega_e)$: 粘弾性ダンパーの貯蔵剛性 3)


ω。: 系全体の等価剛性 (式(2)) に対応した円振動数

S:ダンパーのせん断面積 d:ダンパーのせん断厚さ

図 - 6 粘弾性ダンパー補強の設計チャート

表 - 1 検討パラメーター一覧

建物周期	T=0.2 , 0.5 , 1.0 , 1.5
制振	粘性ダンパー k _b /k _f =
ディバイス	粘弾性ダンパー k _b /k _f =1,5
地震波	観測波,模擬波

入力地震波の加速度応答スペクトル

ここで,解析による制振補強建物の耐震診断 指標、Isの評価方法を以下に示す。

- 1. 靭性指標 F₀=1 で降伏変形(終局変形)となる無補強建物を設定する。
- 2.無補強建物を制振ダンパーで補強した建物に対して入力地震波倍率 R を変化させ解析を行い,応答変形がちょうど終局変形となる時の地震波倍率 R_uを求める。
- 3.無補強建物に対して地震波倍率 R_uの地震 波を入力し,建物の強度(強度指標 C) を変化させたモデルで解析を行い応答変 形がちょうど終局変形となる時の終局強 度(強度指標 C_u)を求める。
- 4. 制振補強建物の耐震診断指標 $_{\mathbf{r}}\mathbf{I}_{\mathbf{s}}$ は $_{\mathbf{r}}\mathbf{I}_{\mathbf{s}}=C_{u}\cdot F_{0}$ に相当するものと見なす。

4.2 解析結果

まず,粘性ダンパーによる付加減衰が耐震性能に及ぼす影響をみるため, I_s 値の増加率と減衰との関係を図 - 8に示す。また,図中に D(h)の式(12),(13)を示し解析結果と比較した。式(12)は限界耐力計算法で用いられている減衰補強係数f(h)の逆数とした。図 - 8をみると付加減衰と I_s 値の関係は,建物周期よって結果にばらつきがみられるものの,式(12)ほど I_s 値は増加しないことが分かる。そこで,解析結果の平均値に近似するような式として式(13)を考えた。式(13)は式(12)の平方根とした。

$$D(h) = 1/Fh = \{1 + 10(h + 0.05)\}/1.5$$
 (12)

$$D(h) = \sqrt{1/Fh} = \sqrt{\left\{1 + 10(h + 0.05)\right\}/1.5}$$
 (13)

次に粘弾性ダンパーの解析結果を図 - 9 に示す。また,付加減衰による効果と耐力上昇による効果を考慮した耐震性能割増係数 D'(h)を式(13)を用いて求め図中に示す。結果は短周期の建物で解析結果と D'(h)の値の差が大きくなる傾向となった。

また , 粘弾性ダンパーの耐力上昇による効果を除いた場合について 、剛性比 $k_b/k_f=1$ の時の結果を図 - 10 に示し粘性ダンパー補強の場合と比

較した。図 - 10 をみると, 粘性ダンパー補強と同様に, 概ね式(13)により解析結果の平均値が近似されている。そこで,式(13)の値を計算値,解析結果を応答値として,その比の値の平均値,標準偏差,変動係数を求め,図 - 11 に示す。平均値は約1 となり,解析結果の平均値をよく近似している結果となったが,変動係数が10%とばらつきが大きい。特にkobe 波,短波で危険側となる傾向が見られた。

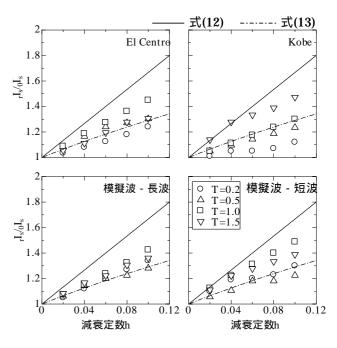


図 - 8 解析結果(粘性ダンパー補強)

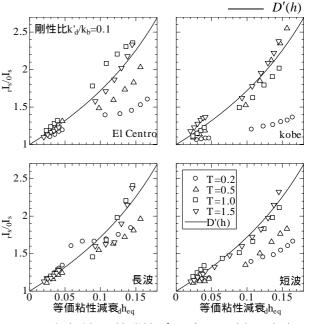


図 - 9 解析結果(粘弾性ダンパーの耐力を考慮)

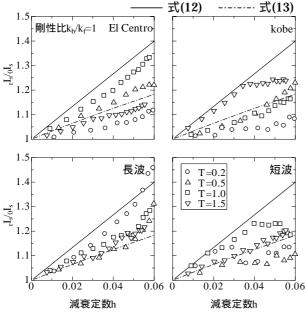


図 - 10 解析結果(粘弾性ダンパー補強 $k_b/k_f = 1$)

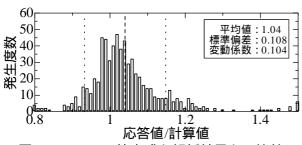


図 - 11 D(h)の算出式と解析結果との比較

5. 制振補強設計法の検証

解析結果をみると粘性ダンパー補強の場合は 概ね従来型補強と同等の変形となり,目標値,I_s に相当する耐震性能を有する設計といえる。粘 弾性ダンパー補強の場合も目標値、I、に近い耐震性能を有する設計が可能である。

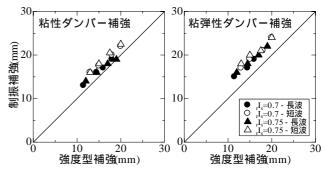


図 - 12 制振補強設計法の検証

6. まとめ

本報では制振補強した建物の等価粘性減衰の 定式化及び,耐震診断基準に基づき補強に必要 なダンパー量を算出する設計法を提案した。

(1)等価粘性減衰の評価

粘弾性ダンパーで補強された建物の等価粘性減衰を剛性比 k_d'/k_b , k_d'/k_f を用いて定式化した。ダンパーの減衰性能は、支持部材との剛性比 k_d'/k_b により決まり,本研究では k_d'/k_b の有効範囲を0.3以下とした。

(2)耐震性能割増係数 D(h)の算出

ダンパーの付加減衰による耐震診断指標 I_s値の増加率 D(h)を,地震応答解析結果を基に算定した。

(3)制振補強設計法の提案

本報で示した耐震性能割増係数 D(h) を用いて設計することにより制振ダンパーで補強する際も耐震診断基準に基づき設計できる可能性を示した。また D(h)の式に関しては今後,他の地震動を用いて検討する必要があると思われる。

参考文献

- 1) 倉本洋ほか:エネルギー吸収部材を用いた既存建築物の耐震 改修効果に関する研究,日本建築学会大会 C-2,pp.173~177,1999.9
- 2) 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・同解説,2001年改
- 3) 笠井和彦,寺元道彦,大熊潔,所健:粘弾性体の温度・振動数・振幅依存を考慮した構成則その1,日本建築学会構造系論文集第543号77-86,2001.5
- 4) 西川和明,康在完,前田匡樹:粘弾性ダンパーを用いて耐震補強した既存 RC 造建物の地震応答,コンクリート工学年次論文集第26巻第2号pp1273~1278,2004.7