論文 硬化型復元力特性を持つエネルギー吸収デバイスを用いた多層 RC 造 建物の耐震性

康 在完*1・堀 則男*2・井上 範夫*3・川股 重也*4

要旨:エネルギー吸収デバイスとしての粘弾性ダンパーに変形を制御するリミッターを併設した,硬化型復元力特性を持つ制振システムを提案し,これを用いた多層 RC 造建物の耐震性の検討を行った。このシステムは,中小地震に対してはダンパーの働きによって建物全体の応答を低減し,大地震に対してはさらにリミッタ - の変形制御によって,損傷の拡大と特定層への集中を避けることを目的としている。

キーワード:粘弾性ダンパー,リミッター,硬化型復元力特性,多層 RC 造建物,耐震性

1. はじめに

筆者らは,エネルギー吸収デバイスとしての 粘弾性ダンパーに変形を制御するリミッターを 併設した,硬化型復元力特性を持つ制振システ ムを提案し,1層に変形が集中するピロティ造 建物における地震応答性状を検討した¹⁾。そこ で,本報においては,硬化型復元力特性を持つ 制振システムを多層 RC 造建物に適用した場合 の耐震性について検討を行った。

通常の中高層鉄筋コンクリート造建物は,高 さ方向の剛性分布や構造部材の耐力の不均一等 により,特定層が弱くなる可能性がある。また, 入力地震動の振動数特性を反映して,特定層に 大きな層間変形が生じる場合もある。このよう な建物に対して,本研究で提案する硬化型復元 力特性を持つシステムを適用すると,特定層に 大きな層間変形が生じ塑性化してもその層の剛 性を高めることによって,その層に集中する損 傷の進展を防ぐことができると思われる。ただ し,剛性が高くなると応答加速度,ひいては応 答層せん断力が大きくなるので,剛性の上昇す る程度やその変形レベル,入力地震動の特性と の関係を十分検討する必要がある。 本研究では,中小地震に対しては,建物各層 に支持部材を介して設置した粘弾性ダンパーの 働きによって振動エネルギーを吸収して,建物 全体の応答を低減させ,全層の層間変形を降伏 未満に抑え,また,大地震に対しては,ダンパ ーのエネルギー吸収に加えて,リミッターの変 形制御により建物の損傷の拡大と特定層への集 中を避けることを目的とした耐震設計の基本的 考え方を述べる。

- 2. 解析モデル
- 2.1 建物モデル

検討対象建物を図 - 1 に示す。この建物は,3 スパン×4 スパンの純ラーメン 4 層モデルで, 基準階の柱断面が 600mm×600mm,梁が 400mm ×700mmである。建物質量は1.2t/m²とし,1.2t/m² ×18m×24m=518.4t/階とする。骨組モデルに対 して静的漸増載荷解析を行い,得られた各層の 層せん断力 - 層間変形関係を図 - 2 に示すよう に Tri-linear にモデル化²⁾した。モデル化した各 層復元力特性を表 - 1 に示す。以下の検討にお いては,このような復元力特性を有するせん断 多質点系を建物モデルとして用いることとする。

*1 東海興業(元東北大学大学院) 工博 (正会員) *2 東北大学大学院 工学研究科 都市・建築学専攻助手 工博 (正会員) *3 東北大学大学院 工学研究科 都市・建築学専攻教授 工博 (正会員) *4 東北工業大学 名誉教授 工博

図 - 2 各層復元力特性の Tri-linear モデル化

表 - 1 建物モデル各層の復元刀特

E	初期剛性	с	Qc	у	Qy
/百	(kN/m)	(mm)	(kN)	(mm)	(kN)
4	699114.4	1.25	871.6	11.59	2732.2
3	696132.3	1.63	1133.7	22.11	4487.4
2	714292.5	1.84	1314.5	28.76	5795.9
1	669109.4	2.73	1829.8	40.38	6802.8

c:ひび割れ変形,Qc:ひび割れ強度 y:降伏変形,Qy:降伏耐力

2.2 支持部材

エネルギー吸収デバイスとして用いる粘弾性 ダンパーは,図-3に示すような鉄骨ブレース を介して建物に設置する方式を考える。

鉄骨の支持部材はH - 200×200×8×12 を用 いており,これを鉄骨ブレースとして建物に固 定して耐震補強材として使う場合,H鋼2本を 1set として計算すると,水平剛性は 330519.6kN/m,せん断降伏耐力は2160.8kNであ る。ただし,ここで用いる支持部材は座屈止め によって座屈はしないものと仮定しており,降

伏耐力は H 鋼の圧縮・引張降伏強度で決まって いる。本報では,このような鉄骨ブレースを図 - 3 に示すように 3 階と 4 階は 4 ヶ所設置し,1 階と 2 階はブレースを降伏させないために 6 ヶ 所設置することとする。また,これらの鉄骨ブ レースは,最初から建物に固定して耐震補強材 として使う場合と制振システムの支持部材とし て使う場合に分けてそれぞれの応答を調べるこ とにする。

2.3 粘弾性ダンパー

本報で用いる粘弾性ダンパーは,微小な変形 時から機能を発揮し,安定した楕円形の履歴ル ープを描くアクリル系粘弾性材料を対象とする。 図-4に粘弾性ダンパーの基本構造を示す。

粘弾性ダンパーは,互いに平行な2枚の板の 相対的な平行移動に伴う粘弾性体のせん断変形 により,履歴面積を伴う抵抗力を発揮して振動 エネルギーを吸収する。粘弾性ダンパーの力学 的特性は振動数に依存して変化する特徴がある ため,図-5に示すような,振動数依存性を概 ね再現できる4要素モデルを用いる¹⁾。

建物モデルに設置する粘弾性体の量³⁾としては,各階に同じ量を設置することとする。表-2に各階に設置する粘弾性体の量を示す。

表 - 2 粘弾性体の量

層	S (mm ²)	d (mm)	層数	allow (%)	設置数
4	500 × 340	17	6	300	4
3	500 × 340	17	6	300	4
2	500 × 340	17	4	300	6
1	500 × 340	17	4	300	6

_{allow}:許容せん断ひずみ

図-6 クッション材及び履歴モデル

粘弾性体の層数と設置数の調節により,各階 に同じ粘弾性体の量を設けた。また,粘弾性体 の許容せん断ひずみは300%,即ち51mmとし た。1層当りの全ダンパーの粘弾性体抵抗合力 に対する4要素モデルのパラメータの値を図-5に示している。

2.4 クッション材

本報で用いる制振システムでは,建物に大地 震が入力された場合,粘弾性ダンパーの支持部 材として用いた鉄骨ブレースがリミッターと接 触し,最初から建物に固定して耐震補強材とし て使う場合と同様な働きをするように設計する。 このシステムを多層の建物に適用することによ り,特定層の変形が大きくなるとまずその層の リミッターが作動して,その層に集中する損傷 の進展を防ぐことができると思われる。接触時 の衝撃を緩和するためには図 - 6に示すような ゴム製のクッション材を用いる。

図 - 7 模擬地震動の加速度時刻歴

既往の研究¹⁾によりクッション材1枚の履歴 特性は把握しており,ここでは図-6に示すよ うなクッション材を3枚重ねたものに受圧面積 を194mm×194mm と仮定したものを用いるこ ととする。

- 3. 解析条件
- 3.1 入力地震動

入力地震動は告示で規定された設計用応答ス ペクトルに対応して作成した模擬地震動を用い た。入力レベルは極めて稀におこる地震動とし, 地盤は第二種地盤と仮定して,告示に示す地盤 増幅を考慮した。位相特性は一様乱数とし,時 刻歴包絡関数は Jennings 型を用いた。これらの 設定によって得られた模擬地震動の時刻歴波形 を図 - 7 に,加速度応答スペクトルを図 - 8 に 示す。ここで,主要動が 8 秒の模擬地震動を長 波,3 秒のものを短波と呼ぶことにする。

- 3.2 解析用建物モデル
 - 解析用の建物モデルは,
 - 建物のみ(以下無補強)
 - 建物に支持部材を固定(以下ブレース補強)

建物に支持部材を介してダンパーを設置

- (以下ダンパー補強)
- 建物にダンパー及びリミッターを設置
- (以下リミッター補強)
- の4種類を対象とする。建物モデルの一例とし
- て,図-9にリミッター補強を示す。

運動方程式は次のようになる。

 $[M] \{\Delta \ddot{x}\} + [C_f] \{\Delta \dot{x}\} + [K_f] \{\Delta x\} = -[M] \{\Delta \ddot{x}_0\} - \{\Delta F\} (1)$

ここで, $\{\Delta F\}$ は粘弾性ダンパー及びリミッタ ーの抵抗力を表すベクトルであり,現ステップ の減衰項および前ステップの応答値より計算さ れる残りの項を補正力として考慮することが特 徴である^{4),5)}。なお,支持部材は過大な応答と なっても降伏させず弾性のままと仮定した。ま た,各層リミッターのギャップ幅は2つのケー スを考え、

A. 中地震時の応答最大変形

B. 降伏ベースシア係数 (C_B=0.33) に対応する Ai 分布外力による変形

のように設定する。この設定は概ね全層同時に リミッターを作動させることを考えている。表 - 3 に A と B に対するギャップの値を示す。

図 - 9 解析用建物モデル

表-3 ギャップの値(単位:mm)

層	A ケース	Bケース
4	7.54	11.06
3	16.70	21.45
2	23.18	28.50
1	30.46	40.38

4. 応答結果の検討

作成した模擬地震動2種類を入力波として時 刻歴応答解析を行った。まず 模擬地震動の 50% 入力の中地震に対する履歴ループを図-10に, 応答最大値を図 - 11 に示す。

これらの結果により,無補強の場合は長波, 短波共にほぼ全層が降伏し,特に,1層と2層 は大きく変形が進んでいることが分かった。ブ レース補強では 減衰が小さく剛性が高いため , 全層の層間変形は抑えられているものの,層せ ん断力の応答が他に比べて2倍以上大きくなっ ており,図-11より,実際には早期に降伏して 過大な変形が生じると思われる。これらに対し て,ダンパー補強は,減衰が付加されるため建 物全層の層間変形が降伏未満に抑えられている ことが確認できた。また、層せん断力も増加せ ず,支持部材も降伏してないことが分かった。

次に,模擬地震動の100%入力の大地震に対 する履歴ループを図 - 12 に,応答最大値を図 -13 に示す。

これらの結果により,無補強の場合,特に1 層の層間変形は,塑性率5程度の領域まで進ん でいることが分かる。ダンパーのみを設置した ダンパー補強では,減衰の増加により無補強に 比べると応答は低減されたものの,1層と2層 に変形が集中し,結果的に1層と2層の粘弾性 体の変形が長波の場合は1層が369.2%,2層が 304.5%, 短波は1層が355.5%であり, せん断 許容ひずみ 300%を超えてしまう。これらに対 して, リミッター補強の場合は, B ケースでは 1 層の粘弾性体が許容値を超えるが , A ケース のように降伏変形より少し手前でリミッターを Gap: リミッターが作動する変形の大きさ 作動させた場合には,粘弾性体の変形が許容値 に納まり,全体的に1層と2層に集中した変形 を概ね各層に分散させ,特定層への変形集中を 防ぎ,損傷の拡大を避けていることが確認でき た。また、層せん断力の絶対値は増えているが, これは,中地震入力に対するブレース補強の応 答層せん断力レベル以下であり,ブレースも降 伏していない。

◇ 降伏値または許容値
□ 無補強
▲ ブレース補強
◆ ダンパー補強

5. まとめ

本報では,硬化型復元力特性を持つエネルギ ー吸収デバイスを設置した多層鉄筋コンクリー ト造建物の地震応答性状を明らかにするため, 模擬地震動を用いた時刻歴応答解析を行い,そ の特性や有効性の検討を行った。以下に結論を 述べる。

(1)中地震に対する応答

建物に設置した粘弾性ダンパーのエネルギー 吸収により,応答層せん断力を増加させずに建 物全層の層間変形を降伏未満の範囲内に抑える ことができた。それに対して,最初から支持部 材を固定した一般的な耐震補強では,減衰が小 さく剛性が高いため,非常に大きい層せん断力 が生じてしまう。

(2)大地震に対する応答

粘弾性ダンパーのエネルギー吸収に加えてリ ミッターの変形制御により,1層と2層に集中 した変形を概ね各層に分散させることから,特 定層への変形集中を防ぎ,損傷の拡大を避ける ことができた。

謝辞

本研究は,平成15年度文部科学省科学研究費補助金 基盤研究(B)(2)「エネルギー吸収装置を持つ鉄筋コンク リート建物の応答変形推定と必要設置量算定法」(課 題番号14350292,研究代表者 井上範夫)の一環とし て行われたものです。ここに記して謝意を表します。

参考文献

- 康在完,堀則男,井上範夫,川股重也:硬化型復元力特性をもつエネルギー吸収デバイスを設置したRC造建物の地震応答性状,コンクリート工学年次論文集,Vol.25,No.2,pp.1171~1176,2003.7
- 2) 片山和行,佐藤和:高層鉄筋コンクリート造建物の弾塑性動特性の検討,日本建築学会大会学術講 演梗概集(東海),2669,昭和60年10月
- 3) 笠井和彦,寺本道彦,大熊潔,所健:粘弾性体の温度・振動数・振幅依存を考慮した構成則(その1) 線形領域における温度・振動数依存のモデル化,日本建築学会構造系論文集,No.543,pp.77~86,2001.5
- 4) 高橋雄司,曽田五月也:一般化マックスウェルモデ ルにより模擬される粘弾性ダンパーを有する構造 物の応答解析方法,日本建築学会構造系論文 集,No.511,pp.85~91,1998.9
- 5) 畑田朋彦,小堀鐸二,石田雅利,丹羽直幹: Maxwell 型モデルを含む振動系の応答解析法(その1)定式 化と数値シミュレーション,日本建築学会大会学 術講演梗概集 B,pp.645~646,1994.9