論文 エネルギー吸収型境界梁の復元力特性に関する実験研究

勝亦 一成*1・四十万 智博*2・前田 匡樹*3・丹羽 直幹*4

要旨:境界梁で連結された鉄筋コンクリート造コア壁と周辺鉄骨造フレームからなるハイブリッド構造の RC 造境界梁をエネルギー吸収部材とした構造システムを開発するために,境界梁にX 形配筋,高靭性セメント系複合材料の使用,および,プレストレスの導入を行い,エネルギー吸収能力改善を目的とした梁部材の静的実験を行った。その結果、X 形配筋にすることで 塑性変形能力やエネルギー吸収能力に高い効果が見られた。

キーワード:境界梁, HPFRCC, X 形配筋, プレストレス, 制震, エネルギー吸収材

研究の目的

近年,建物平面中央の鉄筋コンクリート造コア 壁に地震力の大部分を負担させ,周辺の架構を 大スパン化したハイブリッド型建築物(図-1) が実用化されている。一般的に,これらの構造 のコア壁をつなぐ境界梁には地震時に大きな変 形・応力が生じるため,高い剛性や耐力を確保 する設計が必要とされる。本研究では,この境 界梁を積極的に降伏させて履歴エネルギーを吸 収させることにより,制振ダンパー(エネルギ ー吸収材)として有効に活用し,地震時の応答 を低減させる新しい鉄筋コンクリート構造シス

図-1 プロトタイプ建物

テムの開発を行うことを目的としている。その 第一段階として,境界梁の塑性変形能力および エネルギー吸収能力の改善に効果があると思わ れる因子を抽出し,それらの各因子が復元力・ 履歴特性に与える影響を明らかにするために, 梁部材の静的漸増載荷実験を行い検討した。

- 2. 実験計画
- 2.1 実験因子

エネルギー吸収型境界梁は高いエネルギー吸 収能力を必要とする。高靭性,即ち大変形時ま で安定して耐力を維持すること,スリップ性状 が少ないこと,除荷時剛性が大きいことなどが エネルギー吸収能力に影響を与えると考えられ る。本研究で着目した梁部材の復元力・履歴特 性の改善に有効な因子は,近年研究開発が進め られている高靭性セメント系複合材料¹⁾(以下, HPFRCC),主筋のX形配筋,及び,プレストレ ス力である。

各因子により得られると予想される効果とし て,以下のことが挙げられる。HPFRCC は混入 した PVA 繊維の応力負担によるひび割れ分散効 果により,2~3%の引張ひずみのレベルまで, ひび割れ幅拡大の抑制が期待できる。そのため,

*1 東北大学大学院 工学研究科 都市・建築学専攻 (正会員)

*2 東北大学 工学部 建築学科

*3 東北大学大学院 工学研究科 都市・建築学専攻 博士(工学) (正会員)

*4 鹿島 建築設計エンジニアリング本部・構造設計グループ 博士(工学)

履歴ループのスリップ性状が少なくなり,エネ ルギー吸収能力が向上すると予想される。X形 配筋ではせん断ひび割れ幅の拡大が抑制され, また主筋の付着劣化が生じにくいため,スリッ プ性状が少なくなる。さらにX形主筋が全長に わたり塑性変形し,エネルギー吸収能力が向上 することがこれまでの研究で報告されている。 プレストレスは圧縮軸力により曲げ・せん断ひ び割れ幅の拡大が防止され,スリップ性状が少 なくなると予想される。

2.2 試験体概要

試験体は,コア壁と周辺フレームからなるハ イブリッド構造プロトタイプ建物の境界梁を模 擬した4体で,寸法の縮尺は1/2とした。試験体 一覧を表-1,試験体配筋図を図-2~図-4に示す。

試験体の形状はすべて共通で,断面寸法 b× D=350mm × 500mm , せん断スパン比 a/D=1.5(L=1500mm)である。変動因子は,コンク リートの種類(普通,HPFRCC),主筋の配筋(平行, X形),プレストレス(PS)力の有無(PS なし, PS あり)とした。試験体 NC(普通コンクリート, 平行配筋, PS なし)が標準試験体であり,主筋 はプロトタイプ建物を参考にして 4-D19(SD390) とした。HPFRCC を用いた試験体,及び,プレ ストレス力を導入した試験体では,2.3に示す曲 げ解析結果に基づき主筋の配筋を調節した。

横補強筋は全試験体共通で,2-D10@ 75mm(pw=0.54%)とした。

なお,プレストレス力は梁断面中央に配した PC 鋼材 1-32 により導入し,実験開始時の導入

	衣-1										
試験	試験体名		FC	NC-P	NC-X						
断面		5 <u>0 500 50</u>	350 50 84831	50 350 50 838483 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							
コンク	コンクリート		HPFRCC	普通	普通						
主筋	平行筋	4 - D19	4 - D19 4 - D16		2 - D19						
SD300	_{CD200} X筋		-	-	2 - D19						
3D390	pt	0.73%	0.51%	0.32%	0.73%						
横補強筋	配筋		2-D10@75								
SD295	pw		0.	.54%							
PC鋼材	径	-	-	32	-						
プレス	・レス力	-	-	580kN	-						

軸力を 580 k N (軸力比 =0.1)とした。PC 鋼材 はシース管内に配し,アンボンドとした。普通 コンクリートの試験体はスタブと梁を同時に打 設したが,HPFRCC の試験体では梁部分に HPFRCC を先に打設した後に,スタブ部分に普 通コンクリートを打設した。

図-3 試験体配筋図(NC-X)

図-4 試験体配筋図(NC-P)

2.3 試験体設計

使用した鉄筋・コンクリートの材料試験結果 を表-2,表-3に示す。HPFRCCは粗骨材がない ため、ヤング率は普通コンクリートの半分程度 になっている。

表-4に各種強度の計算結果一覧を示す。

曲げ強度の比較については,主筋の降伏強度 を平均的な降伏強度(1.15 _v)として計算した。

各試験体は,曲げ終局強度Qmuが等しくなる ように主筋を配筋した。試験体NCはプロトタイ プ建物を参考にして 4-D19(SD390)とした。その 他の試験体は,曲げ解析を行い主筋の配筋を決 定した。

X型配筋の試験体 NC-X は X型主筋の傾斜角 による断面積の補正(cos = 0.966)の影響は 小さいので, NC と同一配筋 4-D19 とした。

試験体 NC-P については ,プレストレスカのレ ベルを軸力比 0.1(= N/(bD B))程度と想定し , 主筋を 4-D13 ,プレストレス力を 580kN とした。

HPFRCC は高い引張靭性を有しており,梁の 曲げ降伏強度の上昇に効果があることが報告さ れている。そこで、HPFRCC の引張靭性を考慮 してファイバーモデルによる曲げ解析を行い, 主筋を決定した。解析に用いた HPFRCC の応力 度 - ひずみ度関係のモデルを図-5 に示す。文献 2)では HPFRCC の引張強度 f₁を実験値の 1/2 とした解析により実験結果が良く評価できるこ とが示されている。それを参考に,引張強度を 略算式 f₁=0.56 $\sqrt{\sigma_{\rm B}}$ の 1/2 とし,0%< <2.0%で f₁=0.28 $\sqrt{\sigma_{\rm B}}$ として解析を行った。

表-4	各種強度比較
-----	--------

図-6 に HPFRCC を用いた部材について主筋を 4-D19 から 4-D13 まで変化させたときの M- 関 係を示す。これより, NC と強度が等しくなるよ うな主筋として、4-D16 を用いることとした。

横補強筋については、試験体 NC が曲げ降伏後 せん断破壊する時の降伏ヒンジの塑性回転角 Rp³⁾が2.5%程度となるように設計した。各因子 がせん断余裕度に与える効果を見るために横補 強筋比は各試験体共通とした。

Rpの算定については主筋の降伏強度を上限強 度(1.25 y)として計算した。

図-5 応力度 - ひずみ度関係

表-2 鉄筋強度

降伏応力	ヤング率
$[N/mm^2]$	[10 ⁶ N/mm ²
360.33	0.193
408.86	0.178
440.35	0.187
442.55	0.196
	降伏応力 [N/mm ²] 360.33 408.86 440.35 442.55

表-3 コンクリート強度

圧縮強度	最大荷重	割裂強度	ヤング率
(N/mm^2)	時ひずみ	(N/mm^2)	(10^{4}N/mm^{2})
36.13	0.20%	2.99	2.919
34.18	0.34%	-	1.57

Qmu[1]	Qmu[1]	V[2]	Rp[2]	bu[3]	bu[3]	f [3]	Vbu[3]	Vbu[3]	Rp[3]
平均	上限	(Rp=0)	(V=Qmu)	上端	下端		(Rp=0)	Rp(V=Qmu)	(Vbu=Qmu)
kN	kN	kN	%	N/mm^2	N/mm^2	N/mm^2	kN	kN	%
292.1	316.1	557.1	2.47	3.79	4.51	4.41	497.7	313.7	2.44
292.6	302.8	557.1	2.61	5.49	6.53	3.02	610.3	386.8	3.25
287.4	311.1	711.8	3.80	9.46	11.26	4.41	989.6	332.1	3.92
207	223.8	557.1	3.40	4.48	5.33	3.7	543.4	273.4	3.7
	Qmu[1] 平均 kN 292.1 292.6 287.4 207	Qmu[1] Qmu[1] 平均 上限 kN kN 292.1 316.1 292.6 302.8 287.4 311.1 207 223.8	Qmu[1] Qmu[1] V[2] 平均 上限 (Rp=0) kN kN 292.1 316.1 557.1 292.6 302.8 557.1 287.4 311.1 711.8 207 223.8 557.1	Qmu[1]Qmu[1]V[2]Rp[2]平均上限(Rp=0)(V=Qmu)kNkNkN%292.1316.1557.12.47292.6302.8557.12.61287.4311.1711.83.80207223.8557.13.40	Qmu[1]Qmu[1]V[2]Rp[2]bu[3]平均上限(Rp=0)(V=Qmu)上端kNkNkN%N/mm²292.1316.1557.12.473.79292.6302.8557.12.615.49287.4311.1711.83.809.46207223.8557.13.404.48	Qmu[1]Qmu[1]V[2]Rp[2]bu[3]bu[3]平均上限(Rp=0)(V=Qmu)上端下端kNkN%N/mm²N/mm²292.1316.1557.12.473.794.51292.6302.8557.12.615.496.53287.4311.1711.83.809.4611.26207223.8557.13.404.485.33	Qmu[1]Qmu[1]V[2]Rp[2]bu[3]bu[3]f[3]平均上限(Rp=0)(V=Qmu)上端下端kNkN%N/mm²N/mm²N/mm²292.1316.1557.12.473.794.514.41292.6302.8557.12.615.496.533.02287.4311.1711.83.809.4611.264.41207223.8557.13.404.485.333.7	Qmu[1]Qmu[1]V[2]Rp[2]bu[3]bu[3]f[3]Vbu[3]平均上限(Rp=0)(V=Qmu)上端下端(Rp=0)kNkN%N/mm²N/mm²N/mm²kN292.1316.1557.12.473.794.514.41497.7292.6302.8557.12.615.496.533.02610.3287.4311.1711.83.809.4611.264.41989.6207223.8557.13.404.485.333.7543.4	Qmu[1]Qmu[1]V[2]Rp[2]bu[3]bu[3]bu[3]f[3]Vbu[3]Vbu[3]平均上限(Rp=0)(V=Qmu)上端下端(Rp=0)Rp(V=Qmu)kNkN%N/mm²N/mm²N/mm²kNkN292.1316.1557.12.473.794.514.41497.7313.7292.6302.8557.12.615.496.533.02610.3386.8287.4311.1711.83.809.4611.264.41989.6332.1207223.8557.13.404.485.333.7543.4273.4

[1]主筋の降伏強度を平均的な強度(1.15 y)、上限強 度(1.25 y)として計算 [2]靭性保証指針のせん断強 度式により計算 [3]靭性保証指針により計算 bu:付着信頼強度f:設計用付着応力度の上限強度Vbu:付着破壊の影響を考慮したせん断強度FC:HPFRCCの効果無視(主筋 D16)

2.4 加力装置および加力方法

加力装置図を図-7 に示す。試験体である梁を 縦にした状態に設置し,図中の鉛直ジャッキに より軸力を 0kN に保ち、上下のスタブが水平に なるように制御しながら,水平ジャッキによっ てせん断力を載荷する。

せん断力の載荷は変位制御により,部材角± 1/400を1サイクル,±1/200,±1/100,±1/67, ±1/50,±1/33,±1/25,±1/20を2サイクルず つ行った。1/100,1/50及び1/25のサイクルの後 には小振幅として±1/400(±1/200)のサイクル を入れた。せん断破壊による急激な耐力低下が 認められた時点,または耐力が最大耐力の50% 程度に低下した時点で加力を終了した。

- 3. 実験結果
- 3.1 破壊性状

図-8 に各試験体の荷重 - 変形関係, 図-9 に最 終ひび割れ状況, 表-5 に計算値と実験値の比較 を示す。ここで,限界変形は 耐力が最初に最 大荷重の 80%まで低下する時, 荷重 - 変形関 係抱絡線が最大荷重の 80%に低下するときの2 通りを実験値とし,計算値は部材角が Rp の時の 変形とした。

NC は部材角 1.5%の 2 回目のピーク付近で上

端側の試験体中央部に主筋に沿った付着ひび割 れ(幅0.1~0.8mm)が生じた。部材角2.0%の1 サイクル目に付着ひび割れの幅が開き(1.7mm), 耐力が低下した(最大時の約90%)。部材角3.0% では上端側で主筋が見える程度までコンクリー トが剥落し,耐力が低下し(1回目約75%,2回 目約60%),最終的には付着割裂破壊した。

X型配筋した試験体 NC-X は NC と比べてスリ ップ性状が少なくエネルギー吸収能力に富む履 歴性状が得られた。梁端部ヒンジ領域のせん断 ひび割れ幅が NC と比べて小さく,また、部材角 3.0%程度まで試験体中央部にせん断ひび割れ, 付着割裂ひび割れともに生じなかった。部材角 4.0%で梁端部ヒンジ領域の圧縮コンクリートが 剥落し始めるまでは,繰り返し第2サイクルで も耐力低下はほとんど見られなかった。部材角 5.0%で耐力が低下し始めた(1回目約90%,2 回目約75%)。

プレストレス力を導入した NC-P はひび割れ 幅が小さく,本数も少ないためスリップ性状は ほとんど見られなかったが,履歴ループの形状 は原点指向型であった。水平変形の増大に伴っ て軸方向の伸び変形が生じ PC 鋼棒が伸びプレ ストレス力が増加するため,曲げ降伏後も曲げ 強度が上昇した。部材角4.0%のサイクルで圧縮 側コンクリートの圧壊が生じ始めて耐力が低下 し始めた。部材角5.0%のサイクルで引張側主筋 が数本破断し,耐力が低下した(1回目約75%、 2回目約60%)。

HPFRCCを使用したFCは部材角0.25%のサイ クルから上端側の危険断面(梁とスタブの境界 面)に曲げひび割れが発生した(幅0.6mm)。ま た,部材角1.0%のサイクル時に危険断面で上端 側と下端側の曲げひび割れが貫通して大きく開 いた。この時点で危険断面でのHPFRCCの引張 応力負担能力は失われ,耐力が約80%に低下し た。その後は,危険断面曲げひび割れの位置で のすべり挙動が卓越した。この試験体では,ヒ ンジ領域ではある程度のひび割れ分散が見られ たものの,危険断面のひび割れが早期に大きく

開いたため,履歴ループはスリップ性状を示し, 当初に期待した程の高いエネルギー吸収能力は 得られなかった。危険断面位置でのすべり変形 が卓越したのは,HPFRCC は粗骨材を含まない モルタルであるため,ひび割れ面での骨材の噛 み合い作用が小さいこと、また,この試験体は 引張鉄筋比 pt=0.5%と主筋量が少なく主筋によ るダボ抵抗も小さかったためと考えられる。

図9より、危険断面にひび割れが集中したFC を除けば、NC-Pが最も損傷が少なかった。

3.2 付着応力度

図-10 に上端主筋の付着応力度 - 部材角関係 を示す。

図のようにNCは,付着ひび割れが発生した部 材角1.5%で外主筋の付着応力度が低下し,幅が 開いた部材角2.0%で中主筋の付着応力度が低下 している。それに対し,NC-X,NC-Pは,大変 形時まで付着応力度を保っていることがわかる。

3.3 エネルギー吸収能力

等価剛性は以下のように求めた。

	NC		NC-X		NC-P		FC	
	計算値	実験値	計算値	実験値	計算値	実験値	計算値	実験値
初期剛性[kN/mm]	424.0	161	423.0	225	391.8	201	247**	176
曲げ降伏時の部材角[%]*	0.35	0.45	0.35	0.38	0.34	0.47	0.42**	0.44
曲げ降伏時のせん断力[kN]	281.3	273.6	276.7	253.2	278	294.4	281	281.5
最大荷重[kN]	292.1	304.5	287.5	322.9	292.5	392.5	304.1	286.6
限界変形時の部材角1[%]	2.82	1.99	1 15	4.99	2.95	4.91	3.84	1.48
限界変形時の部材角2[%]	2.02	2.83	т .15	5.93	2.90	4.71	5.04	1.95

表-5 計算値と実験値の比較

*: 菅野式により計算(FC も同様) **: HPFRCC のヤング係数を普通コンクリートの 50%として計算

履歴ループのエネルギー W は、図 11 に示す ように、各加力サイクルの正側・負側のそれぞ れループごとに求め 2 倍した。等価ポテンシャ ルエネルギーW_eは、そのループの最大荷重 P_{max} とピーク時変位 max から求めた。 2 回目加力半 サイクルの等価粘性減衰定数 h_{eq}を図-12,図-13 に示す。

NC と比較すると、NC-X は h_{eq}が大変形まで低 下せず,高い値を維持する。NC-P はループが原 点指向型となるため値は低いが,スリップ性状 が少ないため,大変形時にも低下しない。

FC は部材角 1%程度までの小変形時には X 型配 筋の試験体と同程度の高い値を示すが, 危険断 面のひび割れが貫通し, 耐力低下した部材角 1.0%以降は前述のように危険断面でのスリップ 変形が卓越したため, 当初期待した高いエネル ギー吸収能力は得られなかった。 4. まとめ

梁の静的漸増載荷実験を行った結果、エネル ギー吸収能力の改善に最も効果が見られたのは NC-X であった。X 形配筋にすることにより,せ ん断ひび割れが開きにくい,スリップ性状が小 さい,塑性変形能力が大きいなどの効果が見ら れ,エネルギー吸収能力が高いことがわかった。

また、危険断面が大きく開いた部材角1%程度 までは HPFRCC の使用はエネルギー吸収能力の 向上に効果があることが分かった。

謝辞

本実験の計画および実施では、鹿島建設技術 研究所 永井覚氏及び東北大学大学院 堀則男助 手に、HPFRCC の製作・打設では鹿島建設技術 研究所 閑田徹志氏に、多大なるご尽力をいただ いた。ここに記して謝意を表する。

