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ABSTRACT: Application of a smeared, rotating-crack hypo-elastic model for progressive failure 
analysis of reinforced concrete members subjected to lateral forces has been discussed. Two approaches 
have been applied: the first one, taking into account only the normal crack mode (basic model), and the 
second approach, based on the first one, however with included shear-slip mechanism along crack surfaces 
(integral model). Using originally developed software for non-linear analysis of reinforced concrete 
structures, as well as the characteristic specimens recommended by Japan Concrete Institute for model 
verification, a good agreement between analytical and experimental results has been obtained. 
KEYWORDS: hypo-elastic model, finite element analysis, shear-slip mechanism, rotating cracks, 
smeared approach, progressive failure analysis 
 
 
1. INTRODUCTION 
 
     The principal objective of this research is development of 2D reinforced concrete material 
constitutive models, which take into account the specific cracking phenomena that significantly contribute 
to the non-linear behavior of the RC members subjected to lateral forces. The models are based on the 
rate-independent hypo-elastic approach with smeared rotating cracks, according to Noguchi [1], leading to 
the assumption of identical directions of the material axes with the axes of the principal stresses. However, 
since this excludes participation of shear stresses in the crack planes, a concept based on the Vecchio’s 
physical model [7] taking into account the local shear stresses along the crack planes and the shear-slip 
relation proposed by Walraven [2], has been herein adopted. The reinforcement bars have been treated by 
bi-linear elastic-plastic mixed-hardening model for both discrete and smeared definitions, also assuming 
perfect bond between bars and concrete. 
 
 
2. CONSTITUTIVE RELATIONS 
 
     The basic idea of the proposed models is to treat the biaxial state of stresses and strains of concrete 
by uniaxial constitutive relations in principal directions 1 and 2, using the equivalent uniaxial strain 
functions. The principal stresses and strains are allowed to rotate in coaxial directions during the loading 
process, satisfying the form invariance condition. However, in the cases where a large rotation is expected 
(as in the analysis of beam-column joints), control of this rotation becomes necessary in order to prevent 
numerical instabilities during calculation. Therefore, the improved accuracy is provided by transformation 
of the principal axes in case when the rotation relating to the original state becomes greater than 45 
degrees, in such a way that the stresses, strains and stiffness regarding the axis 1 are substituted to the 
corresponding quantities related to axis 2, and vise versa (Noguchi [1]). 

     The stress-update scheme is based on the hypo-elastic incremental formulation, where the 
“predictor” stresses in each integration point of the finite elements can be calculated as follows: 
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   σ            (1) 1nn1n d ++ += σσ

   d            (2) 1nT1n d ++ = εCσ

In Eqs. (1) and (2), σn and σn+1 are stress vectors from previous and actual load step, respectively; dσn+1 
and dεn+1 are actual incremental stresses and strains, while CT is the matrix of elastic tangent material 
moduli in global coordinate system, which depends on the previous state of the equivalent uniaxial strain 
functions εu. According to Noguchi [1], the increments of these functions dεu can be related to the 
increments of the strains in principal directions dεp using the following equation (with ν being Poisson’s 
ratio): 
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Hence the new total equivalent strains can be obtained from the relation: 
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In Eq. (4), εu,n+1 and εu,n are the total equivalent strain functions for previous and current load steps, 
respectively.  

     The failure functions adopted in the model are based on the Kupfer’s [3] yield curve for bi-axial 
stresses, taking into account the influence of the strength reduction of cracked concrete in compression, 
according to Noguchi [4]. Hence, particularly, for the combination of stresses “tension-compression”, 
when tension strain is greater than cracking strain, the following expressions are used: 
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In Eqs. (5a) and (5b), σc1 and σc2 are failure stresses in principal directions, fc<0 is uniaxial concrete 
strength in compression, εu1 >0 and εcu <0 are equivalent uniaxial strain function in principal direction 1 
(in tension) and uniaxial strain in compression for the corresponding strength fc, respectively. 

     Once the equivalent uniaxial strains have been calculated using the Eq. (4), the corresponding 
equivalent uniaxial stresses σu1 and σu2 in principal directions can be found by the Saenz’s [5] uniaxial 
relation for compression (Eq.(6)): 
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or by tension-stiffening function proposed by Shirai[6] (Eqs. (7a), (7b)):  
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depending on the stress-strain states. In Eqs. (7a) and (7b) Eo is the initial concrete modulus of elasticity, ft 
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is the concrete tension strength, εcr is a concrete cracking strain and εm is a tension strain for zero stresses. 
In the analyses, the constitutive parameters according to Fig. 1 have been adopted (i=1, 2). Once σu1 and 
σu2 have been found, the corrected total stress vector σn+1 can be calculated by using transformation from 
local (principal) into global coordinate system. 

 

Saenz [5]:  

Shirai [6] 

Linear descending branch 

Fig. 1 Adopted constitutive relations for concrete 

     For cases where the shear-slip phenomenon plays significant role during the progressive failure 
process (especially for behavior of shear walls), a smeared shear-slip approach based on the physical 
model published recently by Vecchio (Disturbed Stress Field Model [7]), however, by using the 
incremental-load, tangent-stiffness formulation, is herein proposed. The approach is based on the stiffness 
portion of Walraven’s shear-slip relationship for the cracked surfaces [2], as follows: 
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In Eq. (8) δ  is tangential slip along the crack, w is crack width, fcc is cube concrete compressive strength 
and τc  is local shear stress acting on the crack. Actually, according to the Vecchio’s physical model, local 
stress variations of the reinforcement bars crossing the crack, as well as the local stresses of the concrete 
between the cracks induce local shear stress (the average shear stress in the integration point remains 
equal to zero). Satisfying the equilibrium conditions along the crack surface (Fig. 2), this local shear stress 
can be calculated, as follows: 

 

 
Fig. 2 Local equilibrium conditions along the crack

surface resulting in local shear stress τc   and
shear-slip δ 
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In Eq. (9), ρi is the reinforcement ratio of the
i-th reinforcement (with the direction αi related
to the global x-axis) crossing the crack, while θi

is the difference between angle of the principal
direction 1 and angle of the reinforcement
direction αi. Functions fs,cr,i and fs,i are local steel
stress (at the analyzed crack) and the average
steel stress in the integration point of the actual
finite element, respectively. Although this shear
stress is only local, it results in slippage δ  along
the crack, which can be estimated using the Eq.
(8). In this equation, the frictional properties of



the crack surfaces (aggregate-interlock) are already taken into account. The idea of the proposed 
numerical approach is to calculate the incremental slip strains dεslip from the slippage δ  and consequently 
the additional unbalanced stresses dσslip induced by these strains, as follows: 

             (10) slipTslip dd εCσ =

     The proposed integral algorithm can be used only for the smeared formulation of the reinforcement, 
providing stable numerical consistency especially for the cases of RC members with reinforcement in both 
directions, having approximately the same reinforcement ratio (as in case of shear walls).  
 
 
3. NUMERICAL VERIFICATION 
 
     Verification of the both models (basic one – based on the definition without shear-slip influence and 
integral one – based on smeared steel definition and shear-slip relation) has been done using the results 
from experiments conducted on samples recommended for model verification by Japan Concrete Institute 
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Fig. 3

 
als pro
force-d
 Geometry of the JCI Specimen No. 2 and
comparison of the obtained P-Delta diagrams,
experimentally (Exp) and analytically (A) 
(Higashi et al.) 

perties of the specimens are given in Tabs. 1
isplacement diagrams) are given in Figs. 3, 4, 5 a
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Tab. 1. Material properties for the JCI Beam
Specimen No.2 
Concrete:  
fc’[MPa] 18.4 
Ec[GPa] 21.4 
ft’[MPa] 2.04 
, 2 and 3, and the 
nd 6, where analyses 
Steel: 
 fy[MPa] Es[GPa] 
D13 473  210 
6φ 333 210 
 fc’–Uniaxial compressive concrete strength 
Ec–Initial concrete modulus of elasticity 
ft’–Uniaxial tensile concrete strength 
fy –Yielding stress of reinforcement 
Es–Initial modulus of elasticity of reinforcement 
 
 

Fig. 4 Geometry of the JCI Specimen No. 3 and
comparison of the obtained P-Delta diagrams,
experimentally (Exp) and analytically (A) 
 Tab. 2. Material properties for the JCI Column 
Specimen No.3 
Concrete:  
fc’[MPa] 24.0 
Ec[GPa] 23.0 
ft’[MPa] 1.68 
Steel: 
 fy[MPa] Es[GPa] 
D16 395  226 
6φ 454.6 213 
 

 (JCI) [8]. Within this paper, one beam and one 
column specimens have been considered using 
the basic model, and two shear-walls have been 
treated using the integral approach. Applied 
finite element analytical models, consisting of 
meshes with 8 and 9 node iso-parametric 
serendipity elements for concrete (including 
smeared steel) and truss elements for discrete 
bars, are more detailed explained in Tab. 4, 
together with the details about the experimen- 
tally observed failure modes and comparison of 
the analytical and experimental shear capaciti- 
es. It should be noted that the experiments 
were conducted on cyclic loading. The materi- 
results of the analyses (via 
denoted by “A1” correspond 



Tab. 3. Material properties of the JCI Shear-Wall Specimens #1 and #1” used in analyses  
STEEL 

Columns t=20 cm Beams t=30 cm Wall t=10 cm 
 

CONCRETE 
Diameter fy[MPa] Diameter fy[MPa] Diameter fy[MPa] 

fc’[MPa] 29.7 D13 368  D10 353  
Ec[GPa] 23.4 6φ 
ft’[MPa] 2.36  

399 D22,  
D29 

400 
(default) 

6φ 
(2x6φ/7.5 cm, 
vert. and horiz.) 

363 

 
 
 

 
 
 
be important. However, as to the specimen No.3, since the capacity at splitting-bond was experimentally 
found to be about 84 % of the maximum shear force, the discrepancy between analysis and experiment has 
not been so emphasized, in spite of the fact that the bond properties between steel and concrete have not 
been modeled in the analysis. The integral model has shown to be crucial for more correct simulation of 
the failure progress for shear walls and members with predominant shear behavior, especially where the 
slippage along the cracks in the walls (SSC) are recognized as one of the failure modes (see Tab. 4 for SW 
specimens #1 and #1”). However, discrepancy in P-Delta diagrams regarding the displacements still exists, 
probably due to the experimentally observed slip on the boundaries between the parts with different 
thickness (failure mode SSB) that has not been considered in the model.  

to the integral algorithm, and the analyses 
“A” are related to the basic one. The numeri- 
cal solution has been performed using the in- 
cremental-iterative Newton-Raphson algo- 
rithm, based on the force and displace- 
ment-control scheme. It should be noted that 
the analytical results up to the peak capacities 
have been here treated as physically meaning- 
ful (as they have been presented), although 
the computations have continued further 
following the descending branch of the 
force-displacement diagrams.  
 
 
4. CONCLUSIONS 
 
     Although, using the both described hy- 
po-elastic constitutive models for concrete 
and elastic-plastic model for steel, correct 
simulations of the experimental behavior have 
been achieved not only regarding the force- 
-displacement diagrams, but also with respect 
to the obtained failure mechanisms and crack 
patterns (see Fig. 7: comparison of the analy- 
tically and experimentally obtained crack 
patterns after the first half-cycle for shear 
wall #1), several remarks should be drawn 
regarding the models limitations. The greater 
analytically obtained ductility and less capaci- 
ty compared to experimental ones for spec. 
No. 2 (analyzed by basic model) have shown 
that the modeling of the shear-transfer for 
members failed on shear-tension (ST)  could 

(Aoyama et al.) 

Fig. 5 Geometry of the JCI Specimen #1 and
comparison of the obtained P-Delta diagrams,
experimentally (Exp) and analytically (A and A1) 

(Aoyama et al.) 

Fig. 6 Geometry of the JCI Specimen #1” and
comparison of the obtained P-Delta diagrams,
experimentally (Exp) and analytically (A and A1) 
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Fig. 7 Obtained crack patterns after the first half-cycle (SW#1): left - analytically, right - experimentally 

Tab. 4 Finite element mesh characteristics, obtained shear capacities and failure modes 
Applied FE for steel bars  Shear capacity (kN) Specimen Applied FE for 

concrete  Beams & Columns Wall Exper. Anal. 
FM 

(Exper.) 
JCI beam No.2 56 IP with 8-nodes Discrete: 62 T  108 105 F, ST 

JCI column No.3 92 IP with 8 (9) nodes Discrete: 254 T  123 128 F, C, Bo 

JCI shear wall #1 296 IP with 8 (9) 
nodes 

Discrete: 1198 T Smeared 1650 1638 C, SSB, 

SSC 

JCI shear wall 
#1” 

306 IP with 8 (9) 
nodes 

Discrete: 1135 T Smeared 1410 1378 C, SC, SSB, 

SSC 

IP – Isoparametric finite elements for plane-stress with 3x3 Gaussian integration rule, T – Truss elements 
FM (Failure modes): F – Flexural (yielding of tensile reinforcing bar), C – Crush of concrete in column, Bo – Splitting bond, ST – Shear tension, 
SC-Shear compression in wall, SSC – Failure due to shear slip along cracks in wall, SSB – Fail. due to shear slip of wall along the bottom beam 
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