論文 衝撃弾性波法によるコンクリート内部欠陥探査

岩野 聡史^{*1}·極檀 邦夫^{*2}·境 友昭^{*3}

要旨: コンクリート表面を鋼球で打撃すると内部を球面状に伝搬する縦弾性波が発生する。 コンクリートが健全であれば,縦弾性波が打撃面と底面とを多重反射することによって生成 される振動数が測定されるが,内部に欠陥が存在すると,見かけの弾性率の低下による弾性 波速度の低下,弾性波が欠陥部を迂回して伝搬経路が長くなる,欠陥部で多重反射する縦弾 性波の発生,曲げ振動の発生,これらの現象により健全部の測定結果とは異なる。本論文で は、まず供試体を用いた実験によりこれらの現象を確認し、ついで、実構造物で壁・柱を対 象とした試験で,深さ145mmおよび表層部に存在する欠陥を探査した結果について報告する。 キーワード:衝撃弾性波法,欠陥探査,縦弾性波,多重反射,曲げ振動

1. はじめに

本研究は、コンクリート表面を鋼球で打撃し、 衝撃により発生する振動を測定する、衝撃弾性 波法によるコンクリートの非破壊検査を対象と する。加速度あるいは速度を測定量とする衝撃 弾性波法では、入力振動の振動数帯域幅が狭い という問題点があるが、筆者らはこの影響を除 去し、縦弾性波が打撃面と底面とを多重反射す ることによって生成される振動数を抽出する測 定解析方法を用いて、コンクリートの厚さ測定 を行ってきた¹⁾。今回はコンクリート内部に存 在する欠陥探査を目的として、供試体側面に模 擬的な欠陥を作成し、振動数が欠陥によって変 化する現象を実験的に確認した。さらに、この 結果を利用して、実構造物での壁・柱により、 欠陥探査を行ったので報告する。

2. 実験方法

2.1 実験に用いた供試体および測定方法

実験に用いた供試体の状況を図-1 に示す。 供試体寸法は 900mm×300mm×厚さ 199.5mm である。表面から約 150mm 付近の供試体側面 を φ 10mm のミストドリルにより穿孔し, 模擬 的な欠陥を, 寸法を徐々に広げ作成した。

図-1供試体状況 平面図(上図)と正面図(下図)

測定は穿孔前の健全な段階と, 欠陥幅 12.7mm から 124.2mm までの 9 段階の計 10 段階で, 欠 陥部表面までの厚さが約 150mm となる供試体 表面からと, 欠陥部表面までの厚さが約 40mm となる供試体底面の 2 面から行った。

各測定段階での欠陥状況を表-1 に, 健全な 段階および欠陥幅 12.7mm と欠陥幅 124.2mm で の状況を写真-1 に示す。

測定は,供試体側面から奥行き約 30mmの測 定面に加速度計 (PCB 社製:測定振動数 25kHz) を手で押し付け,測定点から約 20mmの位置を

*1 伊藤建設㈱技術研究所技術開発グループ 主任研究員 (正会員)

*2 東海大学助教授 工学部土木工学科

*3 アプライドリサーチ(株代表取締役 工博

表-1 供試体内欠陥状況

測定 段階	欠陥部寸法(mm)			表面から	欠陥部底面	表面から底面 (健全部回さ)
	幅	奥行き	厚さ	大阳司校园 (mm)	から底面 (mm)	()建土司功子で) (mm)
Α						
В	12.7	52.2	12.7	149.1	37.7	
С	19.5	52.2	14.1	149.1	36.3	
D	32.2	62.4	14.1	149.1	36.3	
Е	45.2	66.2	14.1	149.1	36.3	100 5
F	60.5	66.2	14.1	149.1	36.3	199.5
G	75.0	66.4	14.1	149.1	36.3	
Н	91.1	66.4	14.1	149.1	36.3	
Ι	106.3	66.4	14.1	149.1	36.3	
J	124.2	66.4	14.1	149.1	36.3	

欠陥幅 124.2mm

写真-1 各段階での供試体状況

鋼球で打撃し、サンプリングクロック 10 μ 秒, データ数1024 個で測定波形を記録する。なお、 記録した測定波形をに対し、2.2 に示す振動数 解析を行うが、加速度計が受信できる範囲の強 さで打撃すれば, 振動数解析結果は打撃強さに 影響されない。また、打撃する鋼球直径によっ て入力振動の振動数成分は変化するが、この実 験では、厚さ約 200mm での縦弾性波の多重反 射による振動数を測定できる,直径 10mm(4g) と15mm(14g)の鋼球を用いた。

2.2 解析方法

測定した時間軸上の速度波形に対し, MEM (最大エントロピー法)解析により振動数スペ クトルを求め、測定したコンクリートの応答振 動のスペクトル解析を行う。AR 係数の項数は 40 である。MEM 解析は、自己回帰モデルによ って自己相関関数を推定するという手法を用い ており,縦弾性波の多重反射に起因する周期性 を抽出することができる。また、少ないデータ 数であってもスペクトルの分解能が高いことか ら、少ない回数での多重反射しか観測できない 厚さ 1m 以上のような厚い構造物や、多重反射 の成分が弱い微細な欠陥においても、それらの

位置で反射する縦弾性波の振動数成分を抽出で きるといった長所がある^{2),3)}。

以上のように求めた振動数スペクトルに対し, 振動数が縦弾性波の多重反射によるものであれ ば,測定厚さDは

$$D = V_P / (2f) \tag{1}$$

 $(V_P: 縦弾性波速度, f: 振動数)$

により求められる。また,縦弾性波速度 Vpはコ ンクリートの圧縮強度fcと相関係数 0.95 で

$$f_C = 6.3 \cdot 10^{-18} \cdot V_P^{5.2} \tag{2}$$

の関係にあることがこれまでの実験で確認され ており⁴⁾,式(1)での V_P を3800m/sと仮定すると, 式(2)より, 圧縮強度 20~33 N/mm²のコンクリ ートにおいて, 誤差±5%で厚さ D を測定でき ることとなる。

健全な段階および欠陥幅 12.7mm と欠陥幅 124.2mm での測定波形を図-2 に,各測定段階 で得られた解析結果を図-3,表-2に示す。

測定結果より, 欠陥幅 32.2mm までは健全な 段階と比較して変化は見られず, 強さが最大と なる振動数は 9.28kHz 程度で, 縦弾性波が速度 3800m/s で, 表面から底面までの厚さ(199.5mm) で多重反射したときの振動数 9.52kHz (図-3 一点鎖線)と良く一致している。

欠陥幅が 45.2mm では,強さが最大となる振動数は表面からの測定では 8.98kHz,底面からでは 8.79kHz となり,健全な段階での測定結果および表面から底面までの厚さで多重反射したときの振動数よりも低くなる。その後,表面から測定した鋼球直径 10,15mm での測定結果はほぼ一致し,欠陥幅が大きくなるのに対応して,強さが最大となる振動数はより低く変化していった。

一方,表面から鋼球直径 10mm で測定した場

欠陥幅	表面からの)測定 (kHz)	底面からの測定(kHz)	
(mm)	鋼球10mm	鋼球15mm	鋼球10mm	鋼球15mm
無欠陥	9.38	9.28	9.28	9.28
12.7	9.28	9.28	9.28	9.28
19.5	9.28	9.28	9.28	9.28
32.2	9.28	9.08	9.28	9.08
45.2	8.98	8.98	8.79	8.79
60.5	8.59	8.59	8.59	8.59
75.0	7.71	7.71	7.91	7.71
91.1	6.74	6.74	6.64	6.64
106.3	13.7	6.25	6.25	6.25
124.2	13.6	5.47	5.57	5.57

表-2 強さが最大となる弾性波の振動数

合では, 強さが最大となる振動数は欠陥幅 91.1mmまでは他の測定結果とほぼ一致するが, 欠陥幅 75.0mmからは,縦弾性波が速度 3800m/s で欠陥までの厚さ(149.1mm)で多重反射した ときの振動数 12.7kHz(図-3破線)とほぼ一致 する, 13.7kHz 付近の振動数が観測された(図 -3 参照)。さらに, 欠陥幅が 106.3mm 以上で は,この付近の振動数での強さが最大となった。

4. 実験結果考察

4.1 低振動数成分の発生原因について

3. より欠陥幅が 45.2mm より大きくなると, 縦弾性波が表面から底面までの厚さ 199.5mm で多重反射したときの振動数より低い振動数が 観測された。この原因について検討した。

(1) 欠陥を迂回する縦弾性波の発生

原因の1つとして、欠陥を迂回して表面と底 面間を多重反射する縦弾性波が発生したと考え られる。この縦弾性波の模式図を図-4(1)に、 各欠陥幅で最短経路で迂回した場合の振動数の 計算結果を表-3に示す。表-3より、この弾性 波は欠陥幅が長くなると経路が長くなり、振動 数は低く変化する。表-2の測定結果と比較す ると、欠陥幅45.2mm、60.5mmでは概ね一致し、 この縦弾性波が観測されたと考えられる。しか し、欠陥幅75.0mm 以降では、表-2の測定結 果はこの弾性波よりさらに低い振動数となる。

(2) 欠陥部と測定面の間での曲げ振動の発生

測定面から見た表層部付近に欠陥が存在する と,鋼球打撃により欠陥部と測定面の間が撓み, 打音法などで利用されている曲げ振動が発生す る(図-4(2))。欠陥幅 75.0mm 以降では欠陥を 迂回する縦弾性波よりさらに低い振動数が観測 されたが,この原因として,欠陥までの厚さが 約 40mm である底面からの測定では,曲げ振動 による共振が生じたものと考えられる。また, 欠陥までの厚さが約 150mm の表面からも同じ 振動数が観測されていることから,表面からの 鋼球打撃によっても,底面と欠陥間で曲げ振動 が発生し,表面側から観測された可能性がある。

(3) 欠陥による弾性率の低下

(1)(2)の他に、欠陥によってコンクリートの 弾性率 E が低下し、弾性率 E と式(3)の関係にあ る縦弾性波速度 V_Pが遅くなり、縦弾性波の多重 反射による振動数が健全な段階と比較して低く なる場合も考えられる。

$$V_{P} = \sqrt{\frac{E}{\rho} \frac{(1-\nu)}{(1+\nu)(1-2\nu)}}$$
(3)
(\rho:密度, ν:ポアソン比)

図 - 4 欠陥部で発生する弾性波模式図

表-3 最短迂回経路での縦弾性波振動数

欠陥 幅 (mm)	振動数 (kHz)				
12.7	9.49				
19.5	9.45				
32.2	9.32				
45.2	9.15				
60.5	8.90				
75.0	8.63				
91.1	8.32				
106.3	8.03				
124.2	7.68				

4.2 高振動数成分の発生原因について

鋼球直径 10mm での表面からの測定では、欠 陥幅 75.0mm 以上で, 13.7kHz 付近の振動数が観 測された。これから,測定面と欠陥表面で多重 反射する縦弾性波が発生し,観測されたと考え られる(図-4(3))。この弾性波が観測できると 欠陥までの厚さが探査でき、欠陥探査に有効で ある。しかし、センサーの測定振動数は 25kHz までのため, 縦弾性波速度を 3800m/s とすると, 欠陥までの厚さが 76mm 以下では、欠陥までの 厚さ約40mmの裏面からの測定結果の通り、こ の縦弾性波による振動数は観測できない。また, 鋼球直径 15mm では観測されなかったことから、 打撃する鋼球直径(入力振動の振動数成分)に よっては, 4.1 に示したような他の弾性波の振 動数成分が強く観測され,この縦弾性波は観測 されない可能性がある。さらに、欠陥幅 60.5mm までは観測されなかったことから、微細な欠陥 では観測されない可能性がある。

図-5 壁での測定結果例(実際の厚さ220mm) 測定波形(上図)と解析結果(下図)

5. 実構造物での欠陥探査

今回の実験結果から、欠陥探査方法、判定基準を設定し,施工後30年以上経過した建築構造物での壁およびL型柱にて欠陥探査を行った。

5.1 本法による欠陥探査方法, 判定基準

(1)測定物が健全な場合に、実際の厚さでの 縦弾性波の多重反射による振動数 f₀が測定でき る直径の鋼球で測定する。

(2) *f*₀ より高い振動数が観測される測定位置では,観測される振動数に相当する厚さに欠陥が存在していると判断する。

(3) *f*₀ より低い振動数が観測される測定位置 では,打撃する鋼球直径を小さくして(入力振 動の振動数成分を高くして)再度測定する。

再測定の結果, f_0 より高い振動数が観測される場合は、観測される高い振動数に相当する厚さに欠陥が存在していると判断する。

再測定の結果, f_0 より低い振動数が再度観測 される場合では、曲げ振動が発生しており、表 層部に欠陥が存在していると判断する。

5.2 実構造物での欠陥探査結果

図-5 に厚さ 220mm の壁, 図-6 に厚さ 330mmのL型柱(壁, L型柱ともコンクリート

図-6 L型柱での測定結果例(実際の厚さ330mm) 測定波形(上図)と解析結果(下図)

躯体部および両面モルタル部を含めた厚さ)、での代表的な測定結果例を示す。測定に用いた鋼球直径は壁で10mm、L型柱では15mmである。 また、縦弾性波の速度は3800m/sと仮定した。 (1) 壁

図-5より, 測定例壁Aは, 実際の厚さ220mm での縦弾性波の多重反射による振動数 8.64kHz と良く一致する振動数 8.51kHz が卓越して観測 される。式(1)による測定厚さは223mmとなり, 健全であると判定できる。一方, 測定例壁Bで は, 強さが最大となる振動数は 8.14kHz (測定 厚さ 234mm) と低くなった。さらに, 振動数 12.8kHz (測定厚さ 148mm) が同時に観測され たことから, この測定点では内部の 148mm 付 近に欠陥が存在していると判定した。

測定例壁 B を測定した位置で厚さ 200mm 付 近までコアを採取した結果を**写真-2** に示す。 深さ 145mm 付近に欠陥が存在しており, 判定 結果とほぼ一致しているといえる。測定例壁 B は,欠陥表面で多重反射する縦弾性波と,欠陥 による弾性率の低下で速度が低下した縦弾性波, または,欠陥を迂回した縦弾性波が観測された 結果と考えられる。

(2)L 型柱

図-6より測定例柱Aは、実際の厚さ330mm での縦弾性波の多重反射による振動数 5.76kHz が卓越して観測され、健全であると判定できる。 一方、測定例柱Bは振動数4.88kHz(測定厚さ 389mm)が卓越して観測された。また、直径 10mmの鋼球で再測定したが、同様の結果とな った。さらに、図-5、6の各測定波形を比較す ると、測定例柱Bでの減衰の程度は明らかに他 の測定波形と異なる。これから、この測定点で は縦弾性波ではなく、曲げ振動が発生しており、 表層部に欠陥が存在していると判定した。

測定例柱Bを測定した位置でコアを採取した 結果を**写真-3**に示す。その結果,打撃面側の モルタル部において,コンクリート躯体と接し ている面でクラックが発生し,コンクリート躯 体からモルタルが剥離しており,判定結果と一 致しているといえる。測定例柱Bは,この剥離 部近傍の測定面を鋼球で打撃したことにより, 曲げ振動が観測された結果と考えられる。

6. まとめ

衝撃弾性波法によるコンクリート内部の欠陥 探査を目的として,供試体側面に模擬的な欠陥 を作成し,測定結果がどの様に変化するのかを 実験した。その結果,幅45.2mm以上の欠陥が コンクリート内部に存在すると,(1)欠陥部と打 撃面の間での曲げ振動が発生する。(2)底面で反 射する縦弾性波の経路が欠陥を迂回して長くな る。(3)コンクリートの弾性率が低下し,縦弾性 波の速度が低下する。これらの現象によって健 全な場合に観測される縦弾性波の振動数より低 い振動数が観測されることが確認できた。また, 欠陥幅が大きく,打撃面と欠陥表面までの厚さ が一定以上であれば,適当な直径の鋼球で測定 することによって欠陥表面で反射する縦弾性波 が発生し,観測されることが確認できた。

以上から設定した欠陥判定基準により,施工 後 30 年以上経過した建築構造物で欠陥探査を 行った。その結果,厚さ 145mm 付近に存在す

写真-2 測定例壁 B でのコア採取結果

写真-3 測定例柱Bでのコア採取結果 る内部欠陥と,部材表層部の欠陥であるモルタ ル部の剥離を探査することができた。

今後は、健全部までの厚さ、欠陥位置、欠陥 寸法、欠陥の種類が異なる供試体を製作して実 験を行い、欠陥判定基準をより正確なものに改 善していく予定である。

参考文献

- 岩野聡史,極檀邦夫,境友昭,森濱和正: 衝撃弾性波法によるコンクリート構造物の 厚さ測定,コンクリート工学, Vol.23, No.1, pp.547-552, 2001.6
- 2) 日野幹雄:スペクトル解析,朝倉書店,1992
- 3) 極檀邦夫,関根浩次,岩野聡史:衝撃弾性 波法によるコンクリート板の欠陥探査,第

 28 回土木学会関東支部技術研究発表会講 演概要集,pp.698-699,2001.3
- 4) 岩野聡史ほか:非破壊試験によるコンクリート品質、厚さ、鉄筋の計測に関する研究
 その 23 弾性波法によるコンクリート強度の推定,日本非破壊検査協会平成 13 年秋季
 大会講演概要集, pp.111 114, 2001.10