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s&3  Modified Formulation of Cable Strain in Analysis of Externally
PC Beam

Bui Khac DIEP*!, Tada-aki TANABE*?

ABSTRACT: It is obviously shown that cable strain depends not only on the overall deformation of
the beam but also on friction at deviators, at which frictional resistance always exists. In previous
studies, friction at deviator was incorporated in calculation of the cable strain in terms of friction
coefficients. In this study, formulation of the cable strain is modified in attempt to understand the
structural behavior of externally prestressed concrete beam. Criteria of cable slip are also presented.
The analytical result in comparison with the test data is presented and a good agreement is found.
KEYWORDS: External cable, PC beam, deviators, displacement, cable strain, slip.

1. INTRODUCTION OF EXTERNALLY PC BEAM

In an externally PC system, when the beam is subjected to bending, the external cable
deflection does not follow the beam deflection except at deviator points. As a result, the cable strain
cannot be determined from the local strain compatibility between concrete and cable. For the
calculation of cable strain, it is necessary to formulate the global deformation compatibility between
the end anchorages of the cable. This means that the stress change in the cable is member dependent
and is influenced by the initial cable profile, span to depth ratio, deflected shape of the structure,
friction at deviators etc. Normally, there is frictional resistance between the cable and the deviator and
the cable strain depends on the coefficient of friction. In many studies while calculating the cable
strain, two extreme cases are usually considered namely, free slip (no friction) and perfectly fixed (no
movement) at deviators. In the first case, cable moves freely throughout the deviators without any
restraint and cable is treated as the unbonded internal cable. The cable strain is constant over its entire
length regardless of friction at the deviators. Cable strain can be expressed as

l

1
Aeg = 7£Aecsa 1)

where, Ae and Ag,, are cable strain and concrete strain at cable level, respectively; / is the total

length of the cable between the extreme ends. In the second case, cable is considered perfectly fixed at
deviators, meaning that cable strain variation for each segment is independent from the others. The
increment of cable strain depends only on the deformation of two successive deviators or anchorages,
at which cable is attached to. The strain variation can be expressed as
Al

)

Agg = ] (2)
L
where, Al; and /; are the elongated and original length of considered cable segment, respectively.
For the former case, if frictional resistance at deviators is neglected, deflection and cracking may be

overestimated at the service loading range, whereas for the latter case, if perfectly fixed is assumed,

1* Department of Civil Engineering, Nagoya University, Graduate student, Member of JCI
2* Department of Civil Engineering, Nagoya University, Professor, Member of JCI

=811 —



the ultimate load capacity may be overestimated. This phenomenon can be seen in Fig.1 by showing
the effect of bond condition of cable at deviator in the analysis of three cases (free slip, slip with
friction 0.2 and perfectly fixed), which was calculated by A.M’rad )

When friction coefficients at the deviators are considered ), cable strains on both sides of
deviator are different by portion, which is usually caused by friction force. This difference in strain
can be expressed in terms of friction coefficient, kp,; as

L+l A Analytical Results by A.M’rad
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where, A, and Ag,,, are the increment of strain of (i) and H lf ’ ‘
(i+1) cable elements, respectively; Ag,, is the increment of = « e ot
strain of concrete element at the cable level; I, [, are the 20 i
length of (i) and (i+1) cable elements, respectively. T o 5ol ik om b
In Eq.(3), friction coefficients kp; are assumed to be Defiection {m]

the function of inclination angle of cable having values Flg Bffectof friction atdeviator

between 0 and 1.0. Although relationship between the friction coefficient and the angle of cable was
proposed in [2], based on intensive analysis of the three examples with different shape of cross
section and arbitrary loading scheme. However, these values are not constant during the loading step
and should be changed and depended on the loading condition. For beam with having many deviators
or multiple span continuous beams, the value and sign of these coefficients are often arisen in
calculation and computing process should be repeated until obtaining desirable result. To overcome
these difficulties formulation of the cable strain based on the force equilibrium condition at the
deviator is modified and will be presented hereinafter.

2. MODIFIED FORMULATION OF CABLE STRAIN L
2.1. Force equilibrium at deviator P

Fig.2 shows that F,,F,  are tensile forces in cable F. F.
segments (i) and (i+1) at deviator, correspondingly 6,,6,,, are ' vl
cable angles, respectively. Thus, the force equilibrium
condition on X direction can be expressed as 67N Vbia X

F; cos6; +(-1)* u(F; sin6; + Fy,q sin6;) = Fy, cosd;, @ BE. 1
Where K = {1 if  F,cos6, >F, cosf,,, ol %—— k=2 )
) if  F cos8, <F,, cosf,, ig.2. Force equilibrium at deviator

and u is friction coefficient at the deviator and assumed to be known at each deviator.
To divide both sides of Eq.(4) by E pSA
expressed in terms of cable strain

ps» thus the force equilibrium condition can be

k . o
£, cos6; + (-1)" (g, sin6, + ¢, sin6,,,) = £, cosb,,

+ (=D psing,,, Jep =0 )
where, Eps and Aps are the elastic modulus and area of prestressing cable; &

or [cosel. + (=1)* psing, ]s_ﬁ + [- cosé,

i+l

£ are the cable

si? Y s(i+l)

strains at both sides of the deviator, respectively.

2.2. Incorporation of cable strain in matrix form
Like the previous formulation, the total deformation of cable element should be equal to the
total deformation of concrete element between end anchorages.

!
ilimﬂ =fAe(de (6)
o

i=1
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where, Ag and /; are the cable strain and the cable length of considering segment; Ae  is the

concrete strain at the cable level; / is the total length of the cable between the extreme ends.
From Eq.(5) and Eq.(6), the cable strain can be incorporated in matrix form

" ;
A L L s L A 1 Ae, fAec.ﬂx
G+ S, -G+, 0 .. 0 0 Ae, | [0 .
0 C+(D'S, -C+(-1fusS, ... ... 0 0 Ae,, 0
. : . . H . o < . s =
0 0 0 ... -G, +(-D'ssS, 0 Ay (‘)
0 0 0 ... Gt (N1, =G +(-0f15, || 2, i

or [aes}=Fe} > {ae b=V} (7)
where, C and S are denoted as cosine and sine of the cable angle, subscript under these letters is
indicated.the cable angle number; {d }is the nodal displacement vector.

3. EVALUATION OF CABLE SLIP AT DEVIATOR
3.1. Criteria of cable slip at deviator

The most important thing is that cable slip is not reversible. It means that once cable slip
occurs at deviator (), for example from the deviator (i) toward the deviator (i+1), the slip will
continuously occur in this direction until no occurrence of the slip at this deviator. Change in direction
of the cable slip will never take place.

From Eq.(4), the force equilibrium condition can be rewritten again : Fy, = F5, €))

where Fy, = F;,; cos6;,; - F; cos@, is called as driving force
Fp = (-)* uP = (-1)* u(F; sin; +F;,;sin6;,;) is called as friction force

If the driving force is not equal to zero ( F,;, = 0), then Eq.(8) can be written as : £#__ A =1 &)
de

Now, at any loading stage, there are three possibilities
1.If A >1 - The friction force is greater than the driving force. Slip can not occur
2.If A =1 - The friction force is equal to the driving force. The force equilibrium condition
3.If A <1 - The friction force is less than the driving force. Slip must occur
From above condition, at any deviator, the cable slip will occur only if the friction force is
less than the driving force. Here should pay attention that the friction force and the driving force
should have the absolute value.

3.2. Calculation of cable slip
At certain loading stage, when slip occurs at the deviator i.e. A <1. In this case, slip occurs
and will continuously occur until the equilibrium condition at the deviator after slip is achieved. The
redistribution of the cable forces at both side of the deviator is allowed though slippage. An amount of
slip at one deviator depends not only on an additional force of this deviator, but also on additional
forces of two adjacent deviators i.e. one is from the left side and the other is from the right side. If
F,,F,, and F,,F,, are denoted as the cable forces at either side of the deviator just before and after
slip, respectively. Then, the cable force after slip is assumed to be equal to sum of the cable force
before the slip plus or minus the additional forces, AF,; which is caused by slip at deviators and these
can be expressed
F =F+(-)'® AFgq iy + (-1 6D AFq(i-1) (10)

' keiy+1 ks
Fiy1 = Fa + (1) 97 AF) + (-1 Y AF4 41y
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The sign of the additional force depends on the /f
slipping direction i.e. depends on coefficient k, which is ¢
defined in Eq.(4). After the slip, the force equilibrium
condition should be satisfied and again expressed as

F; cost; +(-1) “#(Fi sin6; +E’+15m9i+1)" fcosdy  (11) Alg'“l(’_‘) AIITM“) Afvm””
Substituting Eq.(10) into Eq.(11), then after
some manipulation, we obtain
A AF g1y + Bi AF 43y + Ci AF g 41y = Favgy = F ) (12)

Fig.3 Equilibrium condition at slipping zone

where, 4;= [(—1)*“-” (cos6: + (- O using, )] ;G- [(—1)"“*“ (cosbin + (-0 using,, )]

B; = [u(sin 6; —sin6;,1 )+ (—l)k(" (cos; +cos6;,; )] ;
For a special case, when cable can not slip at two adjacent deviators, i.e. the additional forces
at these deviators are equal to zero. Hence , Eq.(12) can be rewritten as
B; AF 44y = Faviy = F i) (13)
It is assumed that cable can not slip at two extreme deviators of the slipping zone, therefore,
two cases are possible. If cable did not slip at the left deviator, then AF,;_1) =0, whereas, if cable
did not slip at the right deviator, then AF,;;,) = 0. Therefore, Eq.(12) can be rewritten for two cases
in Eq.(14) and Eq.(15), respectively.
B; AFgq(y + Ci AFgq(i41) = Favy = F (i (14)
A; AF g1y + Bi AF a5y = Faviy =F fr(i) (15)

To satisfy the global equilibrium condition at slipping zone, then the additional forces at
deviators are defined by incorporating Eq.(12), Eq.(14) and Eq.(15) in a general matrix form

0 0 .. Auyy Bu-yy Coy ||AFad(n-n) | |Favin-1) = Fpr(n-
0 0 0 eee 0 A(n) B(n) AFad(") de(n) —Ffr(")

or [saru }=fr} > {ar}=[sT'{r} (16)
Therefore, an amount of slip at deviator can be determined as
AF 4

Slip;= lj  for k=1 Cable slip is from right to left (17)
ps*™ ps
. AF 43 o )
Slip; =——"1;,;  for k=2  Cable slip is from left to right (18)
psEps

where, Eps and Aps are the elastic modulus and area of prestressing cable; [,,/,,, are the cable length of
segments (i) and (i+1), respectively.

Therefore, the possibility for a slip at any deviator depends on the inclination angle of cable,
force difference in cable and friction coefficient. For every loading step, according to the deformation
shape of the beam, the inclination angle of cable will change. As a result of the deflected shape of the
beam, the change of cable angle should be considered in calculation of cable slip.

4. NUMERICAL ANALYSIS

To demonstrate the applicability of the modified formulation and also in comparison with
experimental data for the cable slip, the full scale test of precast segmental bridge with external cable
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which was carried out at a project of expressways in Bangkok ! is taken to analyze as a numerical
example. Hereinafter, the analytical results in comparison with experimental data will be presented.

4.1. Introduction of analytical model

The analytical example is carried out for simple span with 43.25m in clear span length. The
test beam has box cross section with 2.4m in height and prestressed by 6 cables of type 19K15 and
12K15 at either side of cross section. Cables were stressed about 70% of the ultimate strength of cable.

Three deviators are provided at Table 1. Material properties Unit : N/mm?
distance as shown in the layout Concrete Steel Prestressed cables
scheme of the test beam (see Fig.4) o, Es o, E, o, | o, E,
and material properties is in Table 1. [T57 07 773x10° | 390 | 2.1x10° | 1600 | 1920 | 1.93x10°

It is assumed friction coefficients at
all deviators are equal to 0.2 and stress — strain relations for concrete and cable are shown in Fig.5

4.2. Discussion of analytical results

Fig.6 shows load-displacement relationship of midspan section for analytical model as well
as results of the unbonded model calculated by Dan Tassin!". The maximum superimposed moment is
about 58150kN.m, correspondingly the maximum deflection is about 34.4cm. The predicted load-
displacement response has very good agreement with the test data. In comparison with other
calculation, the analytical model gives better results.

43.25 Concrete
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9.725 | L7468 | " o2 | 17x4=68 | 9.225
2 (E00 o ae [ § {0 {cx b

led .
Prestressing cable
G
102 q . L 102 J 8. %
1/2 Section A-A 172 Section B-B | S § | 172 Section C-C ; 1/2 Section D-D'] Sy
g j ? ,
LV © b=/ 329 S g S
o S Epy Epu €
20 |El. 37 Fig.5 Stress — Strain
Fig.4 Layout scheme of test beam (All dimensions in m) relationships

Fig.7 shows concrete strain at the midspan section against the superimposed moment. From
this figure, it could be seen that the concrete strain curve is nearly the same as the experiment. At the
ultimate stage, increment of the concrete strain is about 0.00133, while experimental value is about
0.0012.Value of the concrete strain of the unbonded model predicted by Dan Tassin is not available,
so comparison could not be made.

Em : i Exporimenal 0 |7
4 Analytical ~ —— @
20000 By Dan Tasin .|
10000 - .
0 0.‘1 0.’1 0_1! 0,; O.U.XM O.m (].lxl)lZ 0.0016
Displacement [m] i Cable strain
Fig.6 Load-Displacement Fig.7 Concrete strain Fig.8 Strain increase
relationship at midspan section of cable No5
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Increment of cable strain for cables No 5,No6 and Nol and results calculated by Dan Tassin
are presented in figures from Fig.8 to Fig.10, respectively. Almost the strain behaviors of all cables
are characterized by linear and nonlinear portion with departure from linear at a superimposed
loading about 38.000 kN.m. Among 6 cables from No1 to No6, cable No5 has the smallest inclination
angle, so increment of cable strain at the end portion and the midspan portion is not so much different,
almost the same. This phenomenon could be explained that with the smaller deviation angle and thus
the smaller frictional force, the strain variation may be redistributed throughout slippage.

Moment | kN.m|

; Experimental o |-
(4 __| Analytical
By Dan Tassin = = -
d T T T

00005 0001 00015 0002 00025

NITEEE

0.0004 0.0008 0.0012 0.00

Cable strain Concrete strain ! &bl: slip [mm]
Fig.9 Strain increase Fig.10 Strain increase Fig.11 Slip of cable No5
of cable No6 of cable Nol at deviator D2

Cable No6 is located at midspan portion and has only one deviation point as shown in Fig.9
Like cable NoS5, cable No6 has small inclination angle and cable strain of two portions is not
significantly different. Because of the short length, greater strain increase is found in cable No6
compared to others. Maximum cable strain is about 0.0021 for the analytical model.

Fig.10 shows strain increase of cable Nol against superimposed moment at midspan portion.
It could be seen that up to 40000kN.m increment of cable strain is the same as in experimental
observation. However, after that for given superimposed moment, increase of cable strain is smaller
in comparison with-the experimental data. At the ultimate stage, increment of cable strain is about
0.00124 for the analytical model.

Fig.11 shows slip of cable No5 at deviator D2 against superimposed moment. The cable slip
occurs, once the driving force exceeds the frictional resistance at deviator. Cable No5 has smaller
deviator angle and hence smaller frictional resistance resulting in slip at each loading step. This
reason could be explained that the strain increase of every portion is mostly the same and strain
redistribution is obviously took place through slippage as mentioned above. At the ultimate stage,
cable slip at deviator is about 10mm and in comparison with test data a good agreement is found.

5. CONCLUSIONS

The following conclusions can be made from this study. By applying modified formulation of
cable strain, the structural behavior of externally PC beam up to the ultimate state can be satisfactorily
predicted and cable slip at each loading step is also investigated. The results show good accuracy. In
comparison with other calculation, a better result is found from analytical model.
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