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$23  Cyclic Behavior of the RC Columns Using the Modified Lattice
Model
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ABSTRACT: The Modified Lattice Model is extended into the three dimensions. Cyclic torsion is
selected to study the applicability of the suggested model. Investigation of the response of reinforced
concrete columns under the cyclic torsion is studied using the suggested 3-D Model. Evaluation of
shear strength of the existing column is carried out. The response of different RC columns is
predicted. The change of the width of the arch element is shown during the loading stages for the
studied cases. The numerical results for both of the Normal Lattice Model and the Modified Lattice
Model are compared successfully with the experimental results.

Key words: Modified Lattice Model, Normal Lattice Model, total potential energy, and cyclic
torsion.

1. INTRODUCTION

Cyclic loading is commonly applied for the RC structures. However, the applied loads are
generally applied in three dimensions. Analysis of RC structures in 3-D is quite difficult. That is why
a few researches only are interested in such kind of numerical analysis. Even the experimental work
in three dimensions is so limited.

In this paper, the Modified Lattice Model with its suggested technique by the authors is
extended into the three dimensions. The cyclic behavior of the RC columns is suggested as an
example to check the applicability of the suggested model in 3-D. An investigation of the response of
reinforced concrete columns under the reversed cyclic torsion is studied. Evaluation of the shear
strength for several existing columns is carried out. The response of different RC columns is shown
comparing with the experimental results. For the numerical results using 3-D Modified Lattice Model,
and using the new technique to calculate the width of the arch element inside each step of the
calculation, the change of arch element along all the loading stages is predicted. The numerical results
using both of Normal lattice Model and the Modified Lattice Model are also shown together to
capture the accuracy of the calculation in between. The numerical results will be shown with the
experimental results for the comparisons.

2. CONFIGURATION OF THE 3-D MODIFIED LATTICE MODEL UNDER CYCLIC
TORSION

Fig. 1 shows the configuration of a reinforced concrete column simulated into 3-D Modified
Lattice Model. In case of 3-D Modified lattice Model, the column is represented by four simple truss
planes, which are orthogonal to each other. Each truss plane follows all the assumptions of the
Modified lattice Model in 2-D [2]. For the trusses in the wider face of the column, the inclination
angle of the diagonal members is fixed at 45 degrees. For the other two sides in the short direction,
the position of the nodes are kept exactly as they are determined from the wider faces. So, in the short
side of the cross-section, the diagonal angles will usually less than 45 degrees. In case of reinforced
concrete column under the cyclic torsion, which is considered as an example to study this model, all
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the corners of the column is under tension stresses.
Area of the vertical strut equals to the corner area,
which is bisected by the equivalent wall thickness [3].

N Kgf/Cm?

Cyclic P

R

In Fig. 1 the solid lines representing the arch
elements. The sub-diagonal members are kept as two
couples only in the direction of the depth. The 3
thickness of the arch element is changing

continuously according to the minimum total potential Arehl
energy inside each step of the calculation [2]. Fig.2

shows the cross-section of the 3-D Modified Lattice :

Model, considering the tension zone area at each

corner zone, with an area equals to 7%, and.t, as in Arch 2

Eq.1[3].

t,=12%A4 /P, (1)
where ¢, is the wall thickness of the hollow section,

Ac is the area of the solid section and equals to b*d
and Pc is the outer perimeter of the solid cross-section
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Fig.1 3-D Lattice Model for Reinforced
Concrete Column

3. MATERIAL MODELS IN TWO
DIMENSIONAL PLANE STRESS CONDITION t 7 Areaoftersion
zone
o ) & Areaof sub-
Constitutive equations for the used concrete d diagonal member
and steel have a major effect on the output results [ Arch element
under the reversed cyclic load. For example cyclic b

strength and stiffness degradation may prove un-

bt ;
influential on the final results in cases where the t, t,
phenomena of extensive cracking and the yielding of e T

steel dominate the overall behavior. Wi 2 Civss-scotionrof

. . . 3-D Lattice Model
3.1 Uniaxial Concrete Constitutive Equation in

Tension

The diagonal tension member of concrete resists the principle tensile stress resulting from
shear force. The model, which is suggested by Rots et al [4], is considered in this study as shown in
Fig. 3. It connects the points on the envelope where unloading starts straight with the origin of the
coordinate system. Unloading and reloading run on the same line, i.e. there is no hysteresis loop.
After running back and forth the envelope function is valid again. This and similar models
approximate the real behavior relevantly in the overall behavior. The equations for this model are
shown as in Eq. (2) and Eq. (3).

For ascending branch (g, <&, ) o, =E_, (2)
For descending branch (gr 2 80,)
2
o, =(-a)f,exp —mz(fL—lj +af, (3)
gcr

where &,and o, are the strain and the stress of the tension element, respectively. &, is the strain at
the cracking of concrete and E, is the modulus of elasticity of concrete. The stress-strain behavior of

concrete in tension is elastic before cracking and exhibits softening after cracking. The softening
slope should take care of fracture energy for plain concrete and tension-stiffening effect for reinforced
concrete [2]. Eq. (2) shows the elastic behavior before cracking. In Eq. (3), m can be varied to
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simulate the appropriate fracture energy for plain AG
concrete. Appropriate o can be chosen to simulate the
residual stress in the final stage of damage for
simulating tension-stiffening effect in reinforced
concrete. In this research m=0.5 and o=zero are
adopted. To control the constant fracture energy, The
One-Forth Model of Tension Softening Curve is
considered as it is shown in Fig. 4. It is elastic before
cracking, however, once crack occurs, concrete

v

&
exhibits the tension-softening behavior. Therefore, Eor _ . g
after cracking, the tension-softening curve for Fig.3 Tensile Stress-Strain Curve
of Concrete

concrete is applied. Employed softening curve is the
one-forth model as in Fig. 4. The crack width, w,
shown in Fig. 4 is divided by the length of the
diagonal tension member of concrete and converted
into the strain. The fracture energy for concrete in f
this study is kept constant and adopted from the
recommendation by RILEM report 1991 [4]

a

3.2 Uniaxial Concrete Constitutive Equation in

Compression :

" b e Sk Widh W
To consider the compression-softening behavior of w, W,
crushed concrete, the model proposed by Collins et Fig. 4 The One-Forth Model of
al. [5] is adopted. In that model the softening Tension-Softening Curve

coefficient was proposed as a function of the
transverse tensile strain. So, the tension and
compression members are considered as a pair
together. Eq. (4) shows the compressive stress-strain relationship of concrete in this study.

2
e

1.0

08 - 0.34[8—’)
EO

In Eq. 5, ¢€,and &, respectively are the strain in the tension and compression elements for each pair

where, the peak softening coefficient n = <1.0 5)

of subdiagonal members. &, is the maximum strain for the member without softening consideration.

The stress-strain for the compression concrete elements is shown in Fig.5. In this model and in case if
unloading happens at the point A, the unloading direction will follow the same slope of the initial
tangential at the origin point down to the point B. At any point in the direction from A to B, if the
reloading started to happen again, it will follow the same line but in the direction from point B to
point A. If it reaches up to point B, the strain will be recalculated to determine point C. From point C,
the direction of reloading will be in the direction from C to A. During the branch from C-A, if the
unloading happens again, it will come back in the same line and in the direction from A to C. From
Point A, the calculated value of the stress and strain will follow the curve, which is suggested before
by Eq. (4).
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3.3 Stress-Strain relation for Steel Members

4
Numerous models of the hysteric stress- Oy r
strain behavior have been proposed. Most of them
are phenomenological in that, they attempt to Oy=tf
describe the behavior of the reinforcement. It is of |
interest to note that, most analytical models |
proposed to date, have attempted to address the |
hysteric behavior of reinforcement. But the range ‘
of cyclic strain history, to which reinforcing bars = — T3 5e, >
are likely to be subjected, differs significantly 4= 5% E
from that of structural steel members in that c
compressive strains are not as large as tensile
strains. Fig. 6 shows the selected stress-strain
model to represent the constitutive equation for
the reinforcement members. 04 E 10

Fig S Compression Stress-Strain Curve For
Concrete Element

4. OUTLINE OF THE EXPERIMENTAL
DATA

For the case of cyclic torsion several
specimens are tested by Bernt Jakobsen et al. [1].
Under the cyclic torsion, the cross-section of all
these specimens were as a box-shaped cross-
section as it is shown in Fig.7. At the top of the
column there is an axial load “N” applied for
some of these columns to study the effect of the
axial load. Three specimens only which are Fig. 6 Constitutive Model for the
considered as a direct example for the case of pure Reinforcement Members
cyclic torsion are picked up and analyzed N
numerically by the suggested 3-D Modified lattice )
Model. C,, Cq, and C, are the selected columns to
be analyzed. Specimen C, was purely twisted,
whereas Cq and C, were subjected to a constant
axial force as it is shown in Table 1. This force
simulated the dead weight of the superstructure. [rz2ng
The structural parameter varied between C, and -
C, was the reinforcement content, for the e ol . 1
longitudinal reinforcement and for the stirrups. =
The concrete parameters and the reinforcement (a) Cross-Section (b) RC Column
details are shown in Table 1. under Cyclic Torsion

Fig. 7 Configuration of the Experiment Test

E100

500 mm
380

5. ANALYSIS OF THE NUMERICAL
RESULTS

5.1 General Behavior

Figures 8, 9 and 10 show the relations between the torsion moment and angle of rotation for
the specimens C, and Cg, respectively. The numerical response and the experimental results are shown
in each figure. The numerical results are shown for both of the Modified Lattice Model and the
Normal lattice Model. As a general behavior for all the studied specimens, the numerical relation in
between the Normal lattice Model and the Modified Lattice Model are kept constant up to the
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Table 1 Layout of the Experimental Data

Spec- F.MPa F,MPa E.*10* | F,MPa Main Stirrups Axial
men MPa Reinforc S mm Load
ement KN
Cm’.
C, 319 2.6 2.64 400.0 12 75 0.0
Cq 31.9 2.6 - 2.64 400.0 20 150 325
C, 319 2.6 2.64 400.0 12 100 325
Cs
200 150 -
! g
E 100 g 75
: S
5o ok
< p=
=100 75}
i 150
Jm-s 4 3 2 10 1 2 3 4 5 2 = 0 . 1 2
Angle of Rotation ®*10-3 Angle of Rotation ®*1073
Fig. 8 Torsional Moment and Angle of Fig. 9 Torsional Moment and Angle of
Rotation for Column C, Rotation for Column C;

cracking torsion moment. After that the results
using the Normal lattice Model are kept lower
than that case of the Modified Lattice Model. All
the sequence cycles are kept smoothly with a good
agreement with the experimental results, except in
some cycles only. That is which related to the
modeling of the used constitutive equation of the
reinforcement, which has to be modified. In case
of the numerical results using Modified Lattice
Model, the results become closer to the
experimental results. In case of C, which has an
axial load “N”, the response of the torsion
moment and angle of rotation becomes quite
larger than the other cases without this axial load :

as in Fig.8. Furthermore, this response increases ) Angl e of Rotation 107
with the increase of the stirrup amounts inside the Fig. 10 Torsional Moment and Angle of
columns as shown in Fig. 9 and Fig.10. Rotation for Column C,

108 64 20 2 46 8 10

5.2 Behavior of the Arch Element

In the Modified Lattice Model, the thickness of the arch element is changed during the
calculation up to the final loading stage. The thickness of the arch element is calculated inside each
step of the calculation. The value of this thickness is determined by minimizing the total potential
energy for all the structure along all the loading stages. But in case of the Normal Lattice Model, the
thickness of the arch element is calculated only one time during the elastic stage. The change of the
thickness of the arch element for each of the studied columns is predicted. Considering the arch 1 and
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arch 2 as it is shown in Fig.1. In case of
column C,, Fig. 11 and Fig. 12 show the G

change of the arch elements, arch 1 and arch 2 L
respectively. In these two figures and as a
general behavior, the rate of increasing the 100
thickness of the arch element in the beginning E
cycles is less than that case of the final cycles. ? .
Even the rate of this changing is increasing 2 g
gradually from the beginning up to the end. s
From those figures, the thickness of the arch 100
element is increasing significantly during the 48
loading from the elastic stage up to the final :
loading. That is to maintain the appropriate o1 02 03 04 05 05 07 08 05
response close to the real behavior of the " Vaies
column. Fig.10 Behavior of the Arch
Element for Column C,-Arch 1
6. CONCLUSION G
28 : Arch?2

In this paper, the suggested 3-D s RSN

Modified Lattice Model is extended to - -~ l

incorporate the cyclic torsion effect. Both of

the numerical results using the Modified

Lattice Model and the Normal Lattice Model

are shown comparing with the experimental

results. In case of using the Modified Lattice

Model, the numerical results for both of

Modified Lattice Model and Normal lattice

Model are kept constant during the elastic 200
. 01 o2 03 04 05 06 07 08 09

stage, after that, the results using the praale

Modified Lattice Model become lower than Fi .

. ig.11 Behavior of the Arch

that case of Normal lattice Model. The change Element of Column C,-Arch 2

of the width of the arch element is increasing

gradually from the elastic stage up to the

failure case. The rate of increasing is also increasing gradually from stage to stage. The Modified

Lattice Model is closer to the experimental results than the normal Lattice Model to capture the cyclic

loading effect.

M;*10 3 KNm
(=]
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