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43 Localization Analysis of Reinforced Concrete Beams Based on
Finite Element Method
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ABSTRACT: A method based on finite element method has been used to simulate localization
phenomenon in RC elements. This paper is dedicated to the modeling of the shear band localization in
context of large strain accumulation in a narrow band without substantially affecting the strain in the
surrounding material. This phenomenon frequently occurs accompanying inelastic deformation and
material acoustic tensor looses its positive definiteness. Furthermore, finite element method is used to
simulate this phenomenon. The model, when used in finite element context, gives mesh-insensitive
results regarding to the width of the shear band.
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1. INTRODUCTION

Mechanism of shear failure in concrete as well as reinforced concrete has been a long-standing key
problem that is not fully clarified and argued from various angles. Experiments show that in close
vicinity to the peak point, before or after that, a localized damage band could often be observed in
reinforced concrete structures. For some kind of structures like shear walls, concrete cracks occur
firstly at the early stage of load, however as the external load increased to the certain extent, a damage
band would occur within a short interval of time along the direction which is entirely different from
the initially formed crack direction. In the case of reinforced concrete beams, regarding to the amount
of the longitudinally bars and also web reinforcement, damage band direction usually is near to the
initially formed crack direction. Once this phenomenon occurred, the structure would fail with large
strain localizing inside the damage band without affecting the other parts of the structure. For these
kinds of structures, the post peak behaviors and also failure point of loading and displacement can not
be obtained correctly by analysis without knowing what is the reason for this phenomenon and how to
simulate this phenomenon by numerical analysis.

To overcome this difficulty we used a special model of shear band localization which the localized
zone is embedded within the element. In this method, the width of shear band or localized zone is less
than an element size. An approximation of the element size can be calculated by square root of the
element area. It is important to note that localization takes place due to strain jump in the shear band
and in fact there is no continuity for strain field in the localized element. For this purpose, it is
necessary to recalculate stiffness and B matrices for localized element considering strain discontinuity
and bifurcation phenomenon. In the discontinuity element, a length scale parameter is introduced
which is a material parameter and can be related to the size of the fracture process zone. This solves
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the mesh-size dependence problem as present when a standard crack model is used. To calculate band
direction and finite element formulation, we review some aspects of the general theory of strain
localization and bifurcation.

2. MECHANISM OF LOCALIZATION AND FINITE ELEMENT FORMULATION

Localization is a phenomenon that large strain accumulates inside a part of material without
substantially affecting the strain in the surrounding materials. As it is known that material instability
which can be possibly lead to the localization phenomenon in structures, occurs when acoustic tensor
loss its positive definiteness. The physical mechanism for this phenomenon is that strain field across
the damage band can be possibly takes a jump, while the equilibrium of the stress across the damage
band remains to be satisfied (Fig.1). To derive under what condition this kind of localization is

triggered, we will adopt the element level bifurcation analysis of Ortiz, et al. :

The incremental stress-strain relation can be put in the form 1
y

d'y- = Dijklékl M

where D, is the tangential constitutive matrix of the
material. Taking jump of (1) gives

Nd'u “ = Dy “éu“ )

Equilibrium across discontinuity planes requires that traction ¢

e continnonsahien Fig. 1 Localized damage band

A

i l= o] = o Ol /,
./c' \./;

where # is the normal to the plane. Combining (2),(3) o

D& =0 (4)
The criteria for this kind of localization phenomenon can be
expressed as 1o

_ Fig. 2 Failure surface for
det(A(n)) =0 (5) concrete

where  A(nym, = (n, D:_/Idnl)mk =0 is the acoustic tensor (Fig. 1). Equation 1 can be rewritten as:
Au (n)mk = (nl Dl}kln/ )mk =0 (6)

If the material satisfies Eq.(5) ,then increments of strains can have a jump along the discontinuous
surface(Fig.1) and is given by |Ag] = Ae™ — Ae™ = ol where in two dimensions

myn, £, (7)
T= m,n, s o= £,
mn, +m,n, 2e,
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then

lAgl = a(mn,,myny ,myny +myn))T (8) —%
1
where ¢ is the strength of the jump mode 7" ,while the equilibrium .
across the discontinuous planes remains to be satisfied. In the
local coordinate system X, — y,, increment of the stress is L
04
"AO‘H = (Aaxl ’Agyl ’Arxlyl )T = (O’Aayl ’O)T (9) 0.2
In order to take a factor of localization into consideration, the RN S S T S (Vv O]
finite element with embedded discontinuous displacement field 4, %1000
has been used (Belytschko,T. ef a/* ). In the absence of localiza- Fig. 3 Uniaxial concrete
tion, the strain increment is defined by As = BAd, where Ad is COMPIEISIQRARSponse

the increments of nodal displacement. Once localization occurs,
the strain-nodal displacement matrix B can be calculated as:

n _ . T
_=Yﬁ—u+aAMblﬂ7)B a0

B, =(I-a,7T")B

where B, is related to localized zone and B, is related to

nonlocalized zone. T matrix is as 7' = 7'/ If ' and the strength of

05’eu 4 8 12 16 20
the jump mode @ = a,(h/b)T"BAd where h is the square &, x 1000

o Fig. 4 Uniaxial ete tensil
root of the total area of the element (an approximation of the 1g. 4 Uniaxial concrete tensile
. . response and linear approximation
element size) and ;, can be evaluated using Eq.8. For the sake of
the limit of this paper, details to determine n, m and «, which are

complicated, will not be given in this paper (see ref. 2 for more details). b is the shear bandwidth.
Note that the analysis which B matrix is calculated by Eq.10 is called localized analysis in this paper.
Standard FEM is that strain jump is not taken in account and B matrix is calculated by standard form
of calculation without localization effect.

It is notable that 7" m can define the type of the failure. For a pure mode-I , m is aligned with n

and n"m=1,on the other hand for a pure mode-1I, m is perpendicular to n then n'm=0.
Alternatively the first condition is related to the tension failure and the second one indicates shear
failure likewise between two amount is possible which shows mixed mode of failure in the element.

3. CONSTITUTIVE MODELS FOR REINFORCED CONCRETE
In this paper, for elasto-plastic calculation, the Drucker-Prager criterion which is suitable for such
a concrete material has been used. In the case of plane stress, the constants of the Drucker-Prager

criterion are so determined in this analysis that the failure surface of the Drucker-prager can go
through the uniaxial tensile strength £, and uniaxial compressive strength /. of concrete. In the case

of compression in the failure surface, there will be a cut off to avoid more stress than fc’ (Fig. 2)
3.1 CONCRETE COMPRESSIVE RESPONSE

For compression response of concrete in the uniaxial test, linear form of relation between stress and
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strain has been chosen (Fig.3). In the compressive-compressive zone, two straight lines that go
through 1", are adopted as the initial failure lines. f" is the compressive strength when the tensile
strain &, ,which is perpendicular to the compressive direction, is taken into account and can be
evaluated by the equation f,"= 77,/ where:
1
- 11

= 08-034(¢, / &) (1)
and &, is the compressive strain at the peak stress fand is usually taken as 0.002. The failure
surface, when the concrete is untouched, is shown in Fig. 2.

3.2 CONCRETE TENSILE RESPONSE

A result of taking this approach is that the proposed concrete tensile response must now reflect the
influence of the reinforcement. If the concrete is unreinforced, then the average tension in the concrete
must reduce rapidly to zero. Fig.4 shows used tensile stress-strain model of concrete. The curve
consist of two distinct branches. Before cracking the stress-strain relationship is essentially linear.
Upon cracking ,however ,a drastic drop of strength occurs and the descending branch of the curve

becomes concave. For simplicity, linear approximation of the descending branch of the curve has
been chosen for the analysis.
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4. NUMERICAL INVESTIGATION 300

The constitutive models described and also mathematical o

expressions are implemented into the finite element 2
formulation. All of the reinforced concrete beams are 150 ,
subjected to monotonic loading. Bond is assumed to be rigid | Experiment ---
in the nodal points and there is no slip between concrete Nonlocalized./od. —
elements and steel. The loads and the support reactions were ~ *°
applied as distributed forces to avoid stress concentrations.
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4.1 ANALYSIS OF SIMPLE SUPPORTED BEAM
Fig. 7 Load versus midspan deflection

A T-beam with web reinforcement has been tested by

Leonhardt and Walther ' is analyzed here. The beam geometry and material properties are shown in
Fig.5, along with the finite element mesh used to model the beam. In this model, tension
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reinforcement has been considered in one layer and all of the web reinforcing steel was treated as
smeared and was included in the material properties of the reinforced concrete elements. The beam
was heavily reinforced longitudinally in the tension zone and slightly reinforced by stirrups in the
length of between loads and supports up to the end of the beam. Shear failure at the compression zone
near the loading point has been reported for this beam.

The predicted responses for the midspan deflection versus total load in two cases are also shown,
together with the observed response in Fig.6 and Fig.7. The agreement is very good for the
calculation with the localization effects. As shown in figures, in the case of nonlocalized calculation,
the beam is going to be failed in flexural mode and despite the big amount of steel, reinforcement is
yielded. and it leads the beam to the flexural failure mode. In the other words, when we analyze the
beams with stirrups, beams usually show more capacity against the loading than reality then the
considering of localized form of failure would be more important in this kind of beams. In the
localized calculation, beam is failed in shear and stress in the steel is less than yielded point. Shear
failure happens in this beam while diagonal cracks between load and support developed upon
compression zone near to the loading points.

For the sake of the limit of this paper, deformed shape and crack pattern were not presented but in
the case of localized calculation, sever cracks occurred in element (1) and (2) which had much more
better agreement with experiment’s crack pattern at failure. For more detail, elements (1) and (2) have
been considered. To define mode of failure for these two elements, localization vector 7 and vector

m can be found by the Eq.8 which n T'm gives type of failure in the level of each element. For

element (1) we have ,, _ e = e
-0602) °’ -0329

n’ .m=0952 which gives the angle of n and m equal s e . P2 -
to 16.7 degree .It means this element fails in tension. b=7.62 -r N i
For element(2) also we have: i H:; Y
M b < % .4
I Ll T i n” .m=0941 which ; ? :
~0545[ * "7 1-0329 3 ; g
gives the angle of n and m equal to 13.8 degree then o : Wy

both element have failed in tension.

Unit (cm)

[ 1

4.2 ANALYSIS OF DEEP BEAM

Paiva and Siess’ tested a series of deep beams in
1965 to study the stress distribution and behavior of
deep beams in shear. 19 beams were tested and the  Force )
major variables involved in the study were the amount 5,

Fig. 8 Detailing of the specimen

of tension reinforcement, the concrete strength, the

amount of web reinforcement and the span-depth ratio. 0

Beam G33S-31 is analyzed here. Nonlocal. Analysis
The beam, shown in Fig. 8, was supported on a span

of 61 cm(24.0”). The beam is reinforced in both !3° Local. Analysis

tension and compression zones with two straight bars

placed in single layers near the bottom and top and 100 Bifurcation point

extending the full length of the beam. The tension _

reinforcement is anchorage by welding 2 inch by % inch 5o FEPEIRA, - ==

steel plates at the end of the bars and make rigid bond AT 5

for reinforcement. The experimental load-deflection 0

curve, together with the prediction from analysis in two 0 o5 1 15 2 25 3 35 4

case of with and without localization effects are shown Midnpmn detioktiontin)

in Fig.9. The agreement with experiment result is v : -

good for localized calculation. e = i % Lowc seessias suicijpedetl ection
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The beam was failed in shear as reported in the
experiment result. The strain in steel goes up and before
yielding will come back because of the concrete crash in
the case of local analysis. As seen in the Fig. 9, after a few
steps of calculation, in the bifurcation point, localization
happens in some elements and beam will be softer against
loading than standard finite element calculation. This
phenomenon is due to shear band formation and cause
more deflection in the same load. Fig.10 shows the
deflected shape and crack patterns for both localized and
nonlocalized calculation. The displacements and crack
width are magnified by factors of 20 and 30 respectively.
The cracks are oriented with the shear band direction which
were determined by Eqs.5 and 6 and in fact, this figure
shows the shear band patterns in the localized elements
based on Eqs.5 and 6 and also strain distribution. For
elements (1)and(2) we have n”.m= 0612 and n" .m=0549
which show mixed mode of failure for both elements. The
figure also shows the differences between crack width in
two cases and it is clearly seen that the cracks width in the
localized analysis are entirely severe than in other one
which have very good agreement with experiment. The
crack directions have also very good agreement with
observed cracks in experiment.

5. CONCLUSION

In this paper, localization phenomenon in RC structures
based on finite element method with embedded localization

(1)

Fig.10 Finite element mesh and deflected
shapes and crack patternsin two cases: (a)
Nonlocalized analysis and (b) Localized
analysis both at the point of (1).

zones has been considered. The base of this study is to calculation of B matrix through dividing the
element to two localized and nonlocalized zone. After bifurcation point, a jump in the strain field
happens and the element will be divided to two localized and nonlocalized part. Localization occurs
in an element when acoustic tensor ceases to be positive definite. With acoustic tensor, we can
calculate the direction of cracks. At the end, numerical analysis of two beams showed the ability of
the method to simulates shear failure in the RC elements.
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