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@3 Crack Spacing Analysis of Reinforced Concrete by Gradient
Plasticity Model
K.M. AMANAT*! | T. TANABE "2

ABSTRACT: A higher order continuum method, namely the gradient plasticity approach [1] is applied to
analyze the fracture and crack propagation of reinforced concrete members in tension. Separate finite element
modeling is done for each constituents of reinforced concrete - concrete, reinforcement and the bond-slip
mechanism. A gradient enhanced continuum approach was used for concrete. Analyses was performed to
investigate the capability of the gradient plasticity approach to produce discrete cracked zones at regular
spacing. The effect of different reinforcement ratio on crack spacing and on the average stress-strain relation
of steel is studied.
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1. INTRODUCTION

In practical situations we usually encounter concrete with reinforcement whether the structure is a
usual beam or pavement or it is a massive structure like the dams. In the previous works [2] we dealt with
plain concrete. It helped us understanding the fundamental aspects of fracture and localization behavior of
concrete. Tests on reinforced concrete [3] suggests that the behavior of concrete when reinforced with steel
may significantly change from that of plain concrete and it may be argued that understanding of the
characteristics of plain concrete may not be enough to predict the behavior of concrete in a RC (reinforced
concrete) structure. Acknowledging this fact a number of theoretical model for the constitutive relation of
reinforced concrete have been proposed in the recent past based on experimental studies. Pioneering work in
this area are those of Belarbi and Hsu[4], Chang et al. [5], Hsu and Zhang[6] etc. However, it appears that all
of the proposed theoretical models are based on simplified assumptions of the actual behavior found in
experiments. Modeling of concrete is done upon the consideration of average stress-strain relation in the
cracked and uncracked portion of concrete which is widely known as the tension stiffening effect of concrete.
Although such models have found to be successful in simulating the overall load displacement behavior of
concrete, they fail to do the same through the simulation of cracks discretely. To seek a more generalized
approach, we will study the possibility of simulating the cracking behavior of reinforced concrete by gradient
plasticity method in this paper.

2. NUMERICAL MODELING OF REINFORCED CONCRETE

When the overall macroscopic behavior of concrete is of primary interest we can model the
reinforced concrete by finite element discretization where we use two or three dimensional elements for
concrete and two or three dimensional truss elements or line elements for steel in such a way that the nodes
where the steel elements are connected to the concrete element have same degrees of freedom. The
disadvantage of such modeling is that they cannot simulate the actual cracking phenomenon. A more realistic
model is to discretize the concrete and steel separately so that each components have completely independent
degrees of freedom which are connected via special finite elements which simulate the bond-slip mechanism.
Such modeling is more straightforward and we will use this approach in this paper.

2.1 Constitutive Model for Steel Reinforcement
The behavior of steel under uniaxial tension is much different than that of concrete. After yielding it
shows some hardening and a rather long yield plateau. Also its behavior is much more predictable than
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concrete. Uniaxial tests on steel reinforcing bars
shows that the stress strain curve is initially a
straight line having a slope equal to the Young’s
modulus. After yielding, hardening begins and the

\ u, slope of the curve gradually decreases which
= ultimately results in a long and almost horizontal
yield plateau. The shape of the curve just described

u 1

can best be represented by the following equation

parallel [ V2

perpendicular

proposed by Richard and Abbott[7],
’ Fy=%; oy= (By— Bp)es = +Eq &g (1)
# v, Y=Yz 1+{(E ;0E2)€s}
Fig.3 The bond link element where o; is the tensile stress in the reinforcing bar,

& is the strain, E; is the elastic modulus or the

slope of the initial straight portion, E; is the
modulus in plastic regime i.e. the slope of the second straight portion, oy is the vertical intercept of the
second straight portion and m is a shape parameter for the curved knee. The curve is shown in Fig.1. The
plastic modulus F; is taken as the slope of the strain-hardened region. Although the test shows that this slope
is almost zero resulting in a horizontal line, for the purpose of numerical finite element procedure it is taken
as a small positive value because the experience shows that with iterative incremental finite element approach
absolute zero value poses some disturbance in the convergence of iterations. The parameter m controls the
curvature of the bent between the two straight lines. Lower values of m results in a more gradual bent while
high values of m gives sharp bent. It is found that the use of m=25 is enough to obtain a very sharp kink.

2.2 Bond Stress - Slip Relationship

For analytical applications several linear and non-linear approximations of the bond stress - slip
relationship are available. All the models describe the bond stress as a function of relative slip. But there is
still debate on the amount of maximum slip and the corresponding bond stress level at which perfect slip
occurs. It appears that with so many influencing factors like the amount of confinement, spacing of ribs in
reinforcement, tensile strength of concrete etc. the relative slip o alone is not enough to define the bond
stress - slip relationship. In the present chapter, our aim is only to see the applicability of non-local gradient
plasticity approach in simulating the crack propagation in concrete and hence we will adopt a simpler bond
stress - slip relationship similar to that of Dorr [8] but with different maximum bond stress and with different
values of slip §; at which perfect slip occurs. Dorr proposed one nonlinear function relating the bond stress
with the tensile strength and relative slip as,
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f,,=ﬁ[S(é/éo)—45(6/60)2+1.4(6/60)3] , 0<6<8, 2

In the above expression, f; is the tensile strength in N/mm2 and & is the amount of slip at which perfect slip
occurs which is usually taken as 0.06 mm. For 6> the value of f; is constant at 1.9f,. We will also
investigate a simplified form of the same as shown in Fig.2.

2.3 Constitutive Model for Concrete

For concrete we use the gradient plasticity based constitutive relations originally proposed by Borst
and Miihlhaus [1] which was later applied to early age concrete cracking problems by the authors [2]. Due to
space limitation we are not explaining the same here. Interested readers are suggested to read the above
mentioned papers for further details.

3. FINITE ELEMENT MODELING OF RC MEMBERS

For the discrete modeling of single bars or group of bars with the same location in two or three
dimensional analyses we usually use general three dimensional truss elements. These truss elements are
typically two noded having constant strain between the two end nodes. The deformation of this element is not
compatible with the eight noded two-dimensional elements which has quadratic shape functions for the
displacement field. To maintain deformation compatibility, we must use three noded truss elements having
similar quadratic shape functions for the axial deformation. In this paper we used the three noded truss
element.

The bond stress - slip relationship is simulated by the special contact elements. These contact
elements are dimensionless bond link elements, connecting a single concrete node to a corresponding
reinforcement node (Fig.3). This bond element is basically a pair of simple springs placed orthogonally. One
spring is in the direction of the reinforcement (parallel) which simulate the bond stress - slip relationship and
the other one is perpendicular to the direction of reinforcement and it may model dowel action. If dowel
action is not of any interest then a high stiffness can be assigned to this perpendicular spring or a
compatibility condition of zero relative displacement in perpendicular direction between the reinforcement
node and the corresponding concrete node can be assigned. In this paper we are dealing with pure tensile
loading and as such, a higher stiffness value was assigned to the perpendicular spring. The bond element
shown in Fig.3 is dimensionless, i.e. nodes 1 and 2 have same physical coordinate. For the purpose of
calculation the length of the link elements is taken as unity. The cross sectional area of the link elements is
taken in such a way that it is equivalent to the surface of friction where bond stress is developed.

For concrete we use the eight noded gradient enhanced elements [2]. The softening function proposed by
Amanat and Tanabe [2] along with a seperate exponential function for the gradient influence factor was used

to describe concrete softening. Simple Rankine’s principal stress criterion was used for modeling mode-I
fracture of concrete.
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Fig.5 Load-displacement response for Fig.6 Strain distribution obtained for
Rizkalla & Hwang’s [3] test. Rizkalla & Hwang’s [3] test.

4. NUMERICAL ANALYSIS

Before we begin our parametric study with the present configuration of the analytical model it is
necessary to check the model against experimental results. Rizkalla and Hwang([3] did an extensive test on
RC members in tension. But only a few were without lateral reinforcement. Rizkalla et al[9] pointed out that
in the presence of lateral reinforcement, the crack spacing is highly influenced by the location of such lateral
reinforcements. In the present study we are not considering any effect of lateral reinforcement in the analysis
and as such, test specimens without lateral reinforcement only is considered. Here we choose the specimen
no. 7 of the second series of test made by Rizkalla and Hwang [3]. For this specimen the material properties
are as follows: Young’s modulus for concrete £.=27800 N/mm2 , concrete tensile strength fi=2.7 N/mm2 y
Young’s modulus for steel £,=200000 N/mm2 , yield strength of steel f,=468 N/mm2 , internal length scale
I= 6mm. Fifty gradient enhanced eight noded elements in a row were used to simulate the concrete with three
noded reinforced elements attached to the concrete elements via bond link elements similar to that shown in
Fig.4. The load displacement response obtained is shown in Fig.5 where we see good match between the test
and numerical analysis. The distribution of strain is shown in Fig.6 when the steel just yielded. Initially only
one weak element was introduced at center. During loading, due to the interaction of steel and concrete
elements through the bond-link elements, stress redistribution occurred and other distinct cracked zones were
developed automatically. We observe in total seven distinct damaged zones of which three can be considered
major cracks and the rest ones are minor cracks. In the actual tests five cracks were observed across the
length of the specimen. We may consider this acceptable as a beginning since the effects of different model
parameters on crack spacing are still not studied. In the next paragraphs we will make a parametric study to
investigate the influence of different parameters.

To investigate the crack propagation in concrete a specimen with two longitudinal reinforcement
was analyzed. The length of the specimen was 300 mm long having a cross sectional area of 100mm”. The
specimen was discretized longitudinally with 50 gradient enhanced elements as shown in Fig.4. Tensile load
was applied at the ends of the reinforcement. It is a general postulate that reinforcement ratio is an
influencing factor in determining the average spacing of cracks. As such, a parametric study was made for
different reinforcement ratio. The reinforcement ratio that were studied are 1%, 1.5%, 2%, 2.5% and 3.0%.
Values of other material parameters were as follows: Young’s modulus 20,000 N/mm’ , internal length scale
[ =3 mm, ultimate value of equivalent fracture strain, x, = 0.01, concrete tensile strength f; = 3.0 N/mm2 a
The load displacement response obtained for different reinforcement ratio is shown in Fig.7 which clearly
shows the typical effect of reinforcement ratio on the ultimate load. This is quite in agreement with the
experimental observations. It is seen that different reinforcement ratio produces different ultimate strength
and the load at which concrete begins cracking (the first bend in the load-displacement response) is also
somewhat proportional to the reinforcement ratio (Fig.7).

The distribution of axial strain along the length of the member for different cases of reinforcement is
shown in Fig.8 through Fig.12. For every case two different distributions are presented - one at end
displacement 0.22 mm which is just a few load steps after the first cracking of concrete and another one at
end displacement 1.00 mm which is of the value when the steel is completely yielded. For 1 percent steel
ratio we observe that there are three cracks more dominant than other cracks at both of the load level. For this
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case the three cracks might be considered as primary cracks while the other localized zones might be
considered secondary cracks. For 1.5 percent steel ratio we also observe three major localized zones and other
secondary localized zones for end displacement 0.21 mm. However, at later stages of loading we observe
that the initially smaller localized zones grow almost equal to the initial primary localized crack zones and
we get a total seven almost equally damaged localized zone. The development of damaged zone for 2 percent
steel is similar to that of 1.5 percent steel except that the width of the localized zone appears to be wider. For
2.5 percent steel we initially get seven separate damaged zones but later we observe that the damaged zones
are merged between each other. However, at 1.0 mm displacement we have two distinct peaks in the damage
distribution in between the initially dominant cracks. This may be the indication of a tendency to grow two
cracks in-between the initial cracks thus giving a total of 9 cracks. For 3 percent steel similar phenomenon is
observed as that of the 2.5 percent steel ratio but the effects are more pronounced.

5. AVERAGE STRESS-STRAIN RELATION FOR STEEL

In the analysis and design of reinforced concrete structures the average stress-strain relation of steel
bars are an important quantity. Belarbi and Hsu [4] calculated a series of average stress-strain curves for steel
which is shown in Fig.13. It is seen that in reinforced concrete the average stress strain relation of steel is
affected by the steel ratio. In this study we also calculated average stress-strain relation for steel based on the
parametric study and found similar response as shown in Fig.14. However the post yield slopes for the
present analytical result seem to be too high compared to the results obtained by Belarbi and Hsu [4]. This is
due to the fact that in the present analysis the slope of the steel stress - strain relation in the post yield region
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was taken considerably high value (e.g. 5% of initial Young’s modulus). It was necessary to achieve
convergence in calculation after the steel elements starts yielding. It was observed that if the slope of steel
stress - strain relation in the post peak region is too small then the calculation ceases to converge. This is a
limitation of the present finite element algorithm. However, from the results of the analysis we can at least
infer that the present formulation is capable of producing the physically observed phenomenon.

6. CONCLUSIONS

A preliminary investigation on the applicability of the gradient plasticity theory in the analysis of
reinforced concrete members is made. In the finite element modeling of the RC member separate elements
were used for concrete, steel and the bond interface behavior. It was shown that with such a formulation it is
possible to simulate experimental results acceptably. The parametric study with different reinforcement ratio
suggests that it has some influence on the number and spacing of the crack bands. With the increase of steel
ratio the width of the individual crack bands gets wider and there is a tendency of increasing the number of
cracks. We calculated the average stress-strain relation for the reinforcement and found that the average yield
limit of steel in concrete depends on the reinforcement ratio. The obtained results supports previous
experimental observations. In short, we came across some interesting results during the parametric study
whose detailed interpretation is beyond the scope of the present paper. A more thorough analysis is necessary
before any quantitative description of the observed phenomena is made.
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