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1. INTRODUCTION

The use of non-linear mathematical models for the behavior of concrete structure is
becoming increasingly popular. The results obtained using these models, however, will be
accurate only if realistic material properties and adequate mechanism are incorporated.
Also, the models of general use are necessary to be amenable to the implementation in
the numerical procegure such as the finite element method. For these reasons, one of
the components in the behavior of concrete structures which could not be satisfactor
describeg up to now is the mechanism of shear transfer across the cracks. AlthougK
a great number of macroscopic models have been constructed to deal with the shear
transfer problem, none of those models can clearly express the detailed distribution of
stresses across the crack. Although some theoretical models have been also proposed,
none of those models can deal with the problem to consider the detailed mechanism and
surface degradation of contact until crushing at the contact zone.

In the present study, a new motivated constitutive law for the behavior of concrete
discontinuities with contact surface degradation and material nonlinearity is presented.
Both plastic and fracture deformations with the accumulated damage are formulated at
the microlevel. By paying attention to the detailed contact mechanisms both for the
contact between mortar and mortar and that between aggregate and mortar, the total
deformation are assumed to be due to the aggregate interlock and the degradation of
mortar surface. The degradation of mortar surface is expressed by the degradation of the
original asperity angle due to the current accumulated damage. Moreover, to simulate all
sorts of the nonlinearities, Mohr - Coulomb yield surface in stress space is modified. This
modification contains the moving of the subsequent yield surface due to the variation
of cohesion, internal angle of friction, and tens(ﬁe strength because of the accumulated
damage. The proposed model showed its capability to predict the experimental data.

2. THEORETICAL APPROACH OF THE PROPOSED MODEL

As shown in Fig.1, the cracked concrete is idealized to have plastic-fracture zone
around the crack surfaces while the remaining part is assumed to behave as an elastic
material. Furthermore, the geometry of the crack surfaces is idealized to consider both
the aggregate interlock and the fracture of mortar. To simulate the fracture of mortar,
the crack surfaces are assumed to have sawtooth asperities as shown in Fig.2. Moreover,
the phenomenon of aggregate interlock is introduced as shown in Fig.2. In the present
study, the analysis is focused at the crack interfaces where the pﬁ:\stic and fracture
deformations are likely to occur.
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2.1 SURFACE DEGRADATION

Elastic

The concept of surface degradation is used to
distinguish from the geometrical nonlinearities of the
contact zone. As shown in Fig.2, the asperity angles
a,, and «a, for both mortar-mortar and aggregate-
mortar interfaces have been tentatively expressed in _
terms of damage parameter w as follows: ~ Elastic
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A = Fi(w) = ap exp™® (1)

A, = Fw) = a, + (g—an)\/Zw - W (2)

Fig.1 Idealized Concrete
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where a,, and a, are the current asperity angles at
mortar-mortar and aggregate-mortar interfaces, ag is
the initial asperity surface angle, ‘a ' is the material
degradation parameter. Parameter ‘a ' reflects how
rapidly the asperity surfaces deteriorate. High and
low values of the material parameter ‘a ' correspond
to brittle and very resistant surface asperities. In this
study, the values of ap = 4° and 'a’ = 1.0 are selected
to obtain a reasonable agreement with the test data.
@, is the initial asperity angle of aggregate-mortar in-
terface due to crack opening (a,=26y/D). éy is the Fig.2 The Notations of
initial crack opening and ‘D ' is the maximum aggre- :

gate size (refer to Fig.2). Asperity Angles

2.2 THE RELATION BETWEEN MICRO AND MACRO VARIABLES

Plastic deformation on the asperity surfaces is defined by the terms in the asper-
ity reference system(n, tz\as shown in Fig.3. The (n, t) reference system evolves with
asperity degradation as the plastic deformation occurs. The evolution includes rotation
of the (n, t) system with respect to the fixed (N, T') reference system as shown in
Fig.3. The macroscopic normal and shear stresses (on,77) for both aggregate-mortar
and mortar-mortar interfaces, can be fully transformed into asperity stresses (o,, 7;) as
shown in Fig.3. The transformation must account the degradation of the asperity an-
gles. For a given instant of loading, both macroscopic displacements and stresses can be
transformed into asperity displacements and stresses as follows:

for mortar-mortar interface:

NL
{ On } _ [ cos?a,, 2 $inay, cosa,, ] { oN } _____ ) f” T

—8IN0y, COSQ, COS° Oy, — SIN°Qyy,

6o | _ [ cosam  sinan, on |
{ by }_ [—sinam cosam]{ O } (4)

for aggregate-mortar interface:

Tt o 7 T

{ 8n } - [ sinaoy cosa.'] { on } (5) Fig.3 faN
b¢ ; —cosa;  SInay ot Macroscopic and Asperity Stresses
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{ On } B [ sin’a; 2 sinoy cosq; ] { oN } (6)
= i T T
T J, sina; cosa;  sin‘a; — cos®q g 3 P

where oy = a, ~ ag,, (m—m) and (a — m) refer to both mortar-mortar and aggregate-
mortar contacts.

2.3 MICROSCOPIC PLASTIC-FRACTURE FORMULATION

The present formulation follows the basic concepts of the theory of plasticity. These
formulation will be carried out in the (n, t) reference system. The subsequent yield
surface is assumed to change its size depending on the damage accumulated at each
?lald( interface, i.e. the failure surface is a function of the damage parameter w(1V?) as
ollows:

f=1Fflo,w(WP)) =0 (7)

where 0; denotes the asperity stresses (0,,7;) and w is the accumulated damage which
is a function of the accumulated plastic work W? after initial failure. The first postulate
of the plasticity theory is the decomposition of the incremental displacement (6,,6;) into
an elastic and plastic portions:

ds; = d6¢ + de? (8)

where §; denotes the asperity displacements ( 6,,6;). Another postulate is that only the

elastic displacements induce stresses. Using Hook’s law, this postulate can be expressed
by

do; = ki d§¢ = kS (dS; — do?) (9)

where kf; is the microscopic elastic stiffness tensor for the interface. The value of k)

can be obtained from the corresponding macroscopic one through stress - displacement
transformation matrices in eqs.3 ~ 6. Finally, in order to define the plastic displacement
increments, a flow rule is used as follows:

of
2 = d\ — 10
do? A Ao, (10)
where d) is a non-negative scalar which can be determined from the consistency condition
during loading. The consistency condition (df=0) can be expressed as:

of of
= ' We = 11
df 3. do; + BWr d 0 (11)
where dW? = o; dé?. Finally, the elasto-plastic stiffness matrix for each interface can
be written in the following form:
e Of O8f je
kP = k& — k'q dop Oog kPJ B = = af - af (12)
N Vo2 e 2L 4 R oWr " do;

Note that 9f/0W? in eqs.11 and 12 will be a negative value for the hardening behavior
and a positive value for the softening behavior.

2.4 MODIFIED MOHR - COULOMB FAILURE SURFACE

The subsequent yield surface is defined as a hyperbolic surface as follows:
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f =1 —-(C" - g.tan¢")? + (C* — X" tan ¢*)? (13)

The subsequent yield surface eq.13 is shown in Fig.4, and it may be recognized that the
surface has Mohr-Coulomb surface as its asymptotic surface. The notations ¢*, C* and
x* are the mobilized friction angle, the cohesion, and the tensile strength(tension cutoff),
which are not constant but depend on the plastic history through the damage parameter
w. All of these material parameters are used to consider the material nonlinearities.
Referring to the previous work[6], the possible relations are suggested to be as follows:

C* = Co ezp [~(m w)’] (14) iy o
¢ = do+(d—do)V2w—-0w? w<1 &= —= i
p B & )
{ ¢* == ¢ w >1 (]5) - :\\ ‘/ o
(ZZet Y= (16) S e
X =90 w > wo

Fig.4 Hyperbolic Yield Surface

where m is a material parameter, Co, f;, ¢o and ¢ are the initial cohesion, the ten-
sile strength, the initial friction angle and the final friction angle, respectively. All these
relations are shown in Fig.5. From eq.13, the subsequent yield surface is expressed in
terms of C*, ¢* and x* parameters. Moreover, from eqs.14, 15 and 16, these parameters
are assumed to be unique function of the damage parameter w and defined to charac-
terize the shape and size of the yield surface. Therefore, the function 8f/3W? in eqs.11
and 12 can be elaborated as

of (8f o0ct | 0f 3¢ | Of ax*) dw
awr ~ \3C* dw | B¢ 0w  Ox* 0w’ OWP

(17)
The damage parameter is linked with the accumulated plastic work as follows:
w=4 / dW? (18)

where f is a material parameter.

| Woh b o* A x>
CO ¢ ftoer e eeaes ft

i
1/m w 1.0

(3 4
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Fig.5 Possible Relations of C* —w, ¢* —w and x*—w
2.5 MACROSCOPIC STRESS - DISPLACEMENT RELATIONSHIP

Based on Voigt’s model, the average stress increment for two kinds of contacts can
be expressed as follows:

— 1 a—m m—m
dey; = 5( /sa doi ™ds + /Sm do™™ ds ) (19)
Eq.19 yields the following equation:
S, Sm .
d&,-j = —S-’— d&,‘j (a = m) + ? dO’,‘J‘ (m = m) (20)
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Considering the case of homogenous strain state (i.e., &; = &;(a — m) = &;(m — m))
with the help of eq.20, the incremental stress-displacement relation is given as follows:

doi = [n KGP°™™ + (1 — n) KSP™] ds, = KU ds, (21)

where 7 is the percentage of the area of aggregate at interface with respect to the total
surface area of crack. Both s, and s,, denote the surface areas of aggregate-mortar
and mortar-mortar interfaces. K(%?) [(eP)a=m and (eP)m=m r0 the macroscopic elasto-
plastic stiffness matrices for concrete and both interfaces. The notations (m — m) and
(a — m) refer to both mortar-mortar and aggregate-mortar interfaces. In this study, the
elastic macrostiffness of mortar-mortar interface is assumed to be as follows:

Kj; (mortar — mortar interface) = R K{; (concrete) (22)

The value of 'R’ should be obtained experimentally. However, this value will be obtained
to achieve a reasonable agreement with the test data. The elastic stress-displacement
relation for concrete in eq.21 in a matrix form is given as follows:

doy . Ky 0 dbén =5 . [K’N 0 J
{ dyp }— [ 0 KT]{ dss }, Ki;(concrete) = 0 Ky (23)

where Ky and K7 are the initial normal and shear stiffnesses of the contact zone. Since
the elastic behavior in any reference system is independent of plastic deformation on
the asperity surfaces, the above relation can always be transformed into (]n,t) system.
Although the prediction of both Ky and K7t is necessary, however it is excluded in this
paper. These values are measured from the experimental data.

3. VERIFICATION OF THE PROPOSED MODEL

In this section, a number of examples illustrating the constitutive law’s performance
are considered. In the beginning, the effect of the material parameter /'f’ in eq.19 both
at mortar-mortar (f,) and aggregate-mortar (3,,) interfaces on the behavior of concrete
and on the degradation of the contact surfaces is shown in Fig.6. In Fig.6(a), the solid
lines show the calculation results varying with the material parameter 8, with fixed
material parameter f§,, = 0.9. The results are compared with the experimental data
of Millanf, et al.[3]. The other solid lines in Fig.6(a) represent the degradation of the
asperity angle at aggregate-mortar interface. Also, in Fig.6(b), the effects of material
parameter [, on the behavior and on the asperity angle at mortar-mortar contact are
presented. In Fig.6(b), the value of the material parameter £, = 0.40 is kept constant.

[

Millard and Johnson(1982)

¢ =40  f,=3.6 MPa
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Fig.6 Effect of Material Parameter 3
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Fig.7 shows the prediction of the proposed model under variable concrete strength.
The results are compared with the test data of Fenwick, et al.[1].

Fenwick and Paulay(1968)
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— TR - d Mirza(1972)
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Fig. 7 Comparison with Test Data[l] Fig. 8 Comparison with Test Datal[2]

Paulay and loebers(1974)

~ Sy =505 By = 0.5 = Yoshikawa(1989)
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58.0 by = 0.50 —801 ¢,=8  B,=04
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Fig. 9 Comparison with Test Data[4] Fig. 10 Comparison with Ref.[5]

Figs.8 and 9 illustrates the comparison with the test data of Paulay, et al.[4] and
Houde, et al.[Q{ for the cases of different constant crack widths. Fig.10 represents the

numerical simulation for different constant applied stresses. The results are compared
with Yoshikawa’s model[5] for shear slip of cracked concrete.

4. CONCLUSIONS

A general constitutive law for shear stress transfer problem is proposed. A major
feature of the proposed model is the development of an explicit relation between the
increments of stresses and relative discontinuity displacements at all possible interfaces
across the crack. Such a relation can be implemented in FEM computer codes and
should render more realistic and reliable than those currently performed with more simple
idealization. The numerical calculations showed that the proposed model can predict
the shear transfer problem for concrete discontinuities. However, it is considered that
the present model has its great advantage to deal with more general problems such as

the effect of dilatancy, the cyclic behavior and the time effect. These phenomena are
under investigation now.
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