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1. INTRODUCTION

In recent years, a large variety of models has been proposed to predict the behavior
of concrete. Most of these models are based on the theory of plasticity. However, the
classical approach of plasticity, with scalar loading function in order to satisfy the invari-
ance conditions, becomes rather complex. Alternatively, an approach (called microscopic
approach) based on the local view of the material properties can be adopted.

In the current study, the micromechanical model, originally introduced by the authors
for the description of the monotonic behavior of concrete[2], is extended to predict the
cyclic behavior of concrete. The microcracking, which is the most relevant cause of non-
linearity, is assumed to be localized in the thin and thick mortar layers. For this purpose,
concrete is idealized to have two kinds of contacts; aggregate-aggregate and aggregate-
mortar contacts. The behavior of these contacts is examined and distinguished for both
cyclic and virgin loading. Finally an explicit formula which expresses the tangent stiffness
matrix of the material as a summation of the contributions of all contacts, inside any
representative volume, is derived. The proposed model is in contrast to the Bazant’s
microplane model(1], in which the microcracking was assumed to be localized only in the
thin mortar layers and the concrete was idealized to have single kind of contact(aggregate-
aggregate contact). Moreover, in that model[1], less attention was focused on the cyclic
behavior. The proposed model has shown its capability to verify the test data.

2. THEORETICAL APPROACH OF THE PROPOSED MODEL
2.1 AVERAGE STRESS TENSOR BY AVERAGING CONTACT FORCES

In this study, concrete is idealized to have plural types of particles ; aggregate and
mortar, and every mortar particle is assumed to be surrounded by a number of aggregate
particles. As explained before[2], if there is a stress state 045, which is in equilibrium
but otherwise may be arbitrarily distributed in the region v, the average stress gi; 1s
defined[2] as in eq.(1-a). Using the divergence theorem and the equilibrium condition,
the average volume integral in eq.(1-a) can be reduced to the form in eq.(1-b).
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where n is the number of contacts per particle, both [; and f; are the contact vector and
the contact force at the m™ contact. Now if eq.(1-b) is applied for both aggregate and
mortar particles, the incremental mean stress for any volume can be obtained as follows:

1
AGy; = —( AL + STAFS + Y A1) (2)
Cl CZ C?

O’,J V
where, C; and C; are the total number of contacts between aggregates alone and between
aggregate and mortar particles while V' is the total volume. If the contacts are grouped
within a finite number of orientational intervals, the grouped average Afl(4) in eq.(2)
can be calculated. For alarge number of contacts and very small oriental intervals, eq.(2)
can be written in an integral form[2].

2.2 AVERAGE CONTACT FORCES - STRAIN TENSOR RELATIONSHIP

Neglecting the possible rotation between particles, the average grouped contact force
increments are linked with the displacement increments of the same group of orientation
using the linear contact law as follows:

AfL(8) = K.A8(6), Afi(8) = K,A6(6) (3)

where A62(8) and ASg(8) are the relative normal and tangential displacement increments
of the grouped contacts. K, and K, refer to the normal and shear stiffnesses of the
contact, Af¢(f) and AfE(f) are the components of contact force increments of the same
group of orientations. Here, the normal and shear microstrains (e,,e;) which govern
progressive cracking and failure of microstructure, are assumed to be equal to the resolved
components of macroscopic strains. It can be expected that the relative displacement
increments taken over the contacts of similar orientations are as follow:

= 5l122(8 - sl12 (0

A&;‘:"(G) = A—n—l(—) = K Aé,-]'n,-n]-, Aé;‘“(e) = ——t—l—(—)— = K AE_,'J't,'n]' (4)
_ slem (g = sle™ (8

A(Sflm(g) = n—l()~ = Aé;jn,-nj, A(Sfm(g) = A tl( ) = Aé,'jt;nj- (5)

where (aa) and (am) refer to aggregate-aggregate and aggregate-mortar contacts. &; is
the average macroscopic strain, n and ¢ are the direction cosines of the unit normal and
the unit tangent of the contact. K represents the non-uniformity of strain distribution.

2.3 STRESS- STRAIN RELATIONSHIP

If the average normal and tangential contact forces increments in eq.(3) are combined
with egs.(4) and (5), and the resulting values are introduced into the integral form of
eq.(2), the following incremental stress strain relationship can be obtained[2]:

A&,;j —| Dijkl A&y (6)
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where D;]kl =M fO (k‘ a5kl + k b,]kl)cl E(Q)Iﬁ df + 72 Jo (k Aiskl + k b,Jk,)C’E(G)dG,
E’(H) =2mE(f) = 1+ Acos?’§ — Asin®0 ,  ajm = ninymeru, b = tinjteny,

m = Cilia,/27V, m = Chliay/2nV + Cyla,/2nV

k: = Kifs = doglde,, k, = K,J& = dngfdes
Both (c;, a@;) and (cz, a,) refer to the contacts and the average contact areas between
aggregate-aggregate and aggregate-mortar particles. [; and I, are the averages of the
radii of aggregate and mortar particles. A is the non-homogeneity parameter. k, and
k, are the normal and shear stiffnesses. In this study k, is assumed to be linear with £k,
(i.e. k, = Ak,). E(f) is the density distribution function of the contact normals.

2.4 NORMAL STRESS-STRAIN RELATION OF THE CONTACTS
2.4.1 VIRGIN LOADING BEHAVIOR OF BOTH CONTACTS

Aggregate - Mortar Contact: The stress strain relation for the contact relating o,
to ¢,, must describe the cracking and the damage all the way to complete fracture or
failure, at which o, reduces to zero. It is clear that o, as a function of e, must first rise,
then reach a maximum, and then gradually decline to zero. However eqgs.(7-a) and (7-b)
are proposed for the contacts in tension and in compression as shown in Fig.1-a,

o™ = E, e exp[—k: (—)"( amyP..(T—a), o™ = E,el™ exp[—k. |eZ|P!]...(T—b)

n

where kq, k. ,p and p; are positive constants, E; and F, are the initial micro-stiffnesses
of aggregate-aggregate and aggregate-mortar contacts, respectively.

Aggregate-Aggregate Contact: The normal stress-strain relationships proposed by
Bazant[1] are used here. These relations are shown in egs.(8-a) and (8-b) and in Fig.1-b.

= FEy 2 exp[—k; (e2%)7].....(8—a), 0% = —C1+Cytan™[Cs(en— Cy)].....(8—b)

n

where, C; = —0.27f.,  C, = 0.87f,, C3 =1.15(%), and Cy=—g; tan (&)

2.4.2. CYCLIC LOADING
(1) Unloading path from tension

Aggregate - Mortar Contact: In the unloading from tension to compression, depend-
ing the coordinates of the reloading point in the previous cycle, either path (A) or path
(B) will be followed as shown in Fig.1-a . Path (A), in which the compressive stress at
the reloading point in the previous cycle is less than the microscopic peak stress, based
on the experimental data, the following path is assumed:

* fto { Ep+ Epp 5
n = —— | 10.02¢ In (————
e +[ ) + 040 » )

/i o

" +Erc

where €* and ¢* are the coordinates of the unloading point. Beyond the microscopic
peak stress; the path in the next form will be followed:
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Path (B) in which the compressive stress at the reloading point in the previous cycle
exceeded the microscopic peak compressive strength, is assumed to be as follows:

Xt — £y

€. —e* }0.70
n
)

o = 0"+ (0, — o) {5 — e, = &+ 0.02¢™ {ln(l + 3.0(

nhan

oc

where, €** is the coordinate of the reloading point in the previous cycle.

Aggregate - Aggregate Contact: As proposed by Bazant[1], eq.8(b) will be used if
the unloading in tension takes place as shown in Fig.1-b. In eq.8(b) the expressions of
C1,C3,Cs and Cy will be changed. More details are in ref.[1]

“ f Eirr Ecr ( _) ('7" (U.,E-)
o7 7—7(0",€ 8—a)lj Oy Er
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- ALY 1 2 P
/; li semerene J0mazx
E2V ‘EC Erc EITVJ
a- Aggregate - Mortar Contact b- Aggregate - Aggregate Contact

Fig.1 Normal Stress - Strain Relationship at Both Contacts

(2) Reloading path to tension

For both aggregate-aggregate and aggregate-mortar contacts, the gap in the envelope
curve is described in eq.(12-a). The coordinate of the returning points on the envelope
curve (0,,€,) can now be obtained using eqs.(12-b), (7-a) and (8-a)

€gap = 0.02 {ln(l + 3,0(6 . ))} ......... (12—a), R Al R (12-b)

ot

Starting from the reloading point (0**,&**) up to the reloading point (o,,e,) at the
envelope curve as shown in Fig. 1, the reloading curve is assumed to be as follows:

(13)

*x  0.60
En —E& }

O =0"" + (0, — ™) {Er =

(3) Unloading path from compression

The coordinates of the intersection point between the unloading curves and the
strain axis are observed and modified to be suitable for microscopic path. Starting from
the unloading point (o*,¢*) and passing through the modified point (0, €4) up to the
maximum tensile strength ( f;o, €) as shown in Fig.1, the unloading curve in eq.(14-a) is
assumed. Beyond the point of the maximum tensile strength eq.(14-b) will be followed.
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(4) Reloading path to compression

For aggregate-aggregate and aggregate-mortar contacts, the gap in the envelop curve
is described in eq.(15-a). The coordinates of the returning points on the envelope curve

(0,,€,) can be obtained by eqs.(15-b), (7-b), and (8-b)

€ gap = 0.02 {ln(l B0~ - . ))} ........... (15—a), £, = £+ gaperrrrr. (15—b)

oc

Starting from the reloading point (o**, £**) up to the point (o,,¢,) at the envelope curve
as shown in Fig.2, the reloading curve is assumed to be as follows:

£ — g** }0.60
n

O = 0™ + (0, — 0™) { (16)

£, =~ £

] “0"./ (T—a)
(feor€e) ~K T X (14-b)

(14-2) / £7(16)

a- Aggregate - Mortar Contact b- Aggregate - Aggregate Contact
Fig.2 Unloading Path from Compression and Reloading to Compression

3. VERIFICATION OF THE PROPOSED MODEL

In the beginning, reasonable values of the parameters, which describe the character-
istic properties of the contacts, are selected as follows; p=1.5, p;=1.5(eq.7) and A=0.20,
Mm/m2=0.05, m +m, = 1[2], E1/E;=1.80, A=0.05 and K=0.80(eq.6). Finally, only k; and
k. in egs.(7-a), (7-b) and (8-a) are considered to be variable parameters. A sample of the
results is shown in Fig.3. From Fig.3, satisfactory agreement is obtained. In the case of
uniaxial tension, the value of k.=50x10* is kept constant and the values of k,= 51.5x10*
and 78x10* are used for cases (a) and (b), while in uniaxial compression the value of
k=30x10* is kept constant and the values of k.=30x10* and 58x10* are used for cases
(a) and (b), respectively. In uniaxial tension, the values of 107*E; for cases (a) and (b)
are 16.0 and 25.1 and those of 107*E; are 8.89 and 14.39. In uniaxial compression, for
cases (a) and (b), the values of 107" F; are 14.8 and 23.23 and those of 107*F, are 8.2
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and 12.9, respectively.(All units of E; and E, are in kg f/cm?)
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Fig.3 Comparison with the Experimental Data

4. CONCLUSIONS

In the present study, the cyclic behavior of concrete is investigated through a new
microscopic model. A reasonable agreement with the available macroscopic test data is
obtained. This shows that the present model is capable of predicting the cyclic behavior
of concrete. Also, to have more general understanding of the concrete, a comprehensive
experimental work must be conducted not only on the macrolevel but also on the mi-
crolevel but with emphasis on the study on the more precise distribution of the contacts
and also the strain distribution of the contacts.
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