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[2115] A Time-Dependent Uniaxial Constitutive Model of
Concrete as Composite Structural Material

Chongmin SONG* and Kohichi MAEKAWA*

1. INTRODUCTION

It is well known that the seismic load on a structure subjected to an
earthquake is extremely complicated because not only the seismic force but
also the loading speed changes with time. In finite element method analysis
of reinforced concrete structures under such loads with complex histories,
it is necessary to have a constitutive model which can give the stress for
arbitrary strain-time history. At present there are several models which
can be used for cyclic loadings of constant loading speed or monotonic
loadings of varied loading speeds separately (1)-(4), but no model suitable
to seismic analysis is available. In this paper the time-dependent constitu-
tive relation of concrete is simulated by a so-called "elasto-viscoplastic
fracture model” composed of elastic-plastic-viscoplastic bar elements with

different elastic, plastic and viscoplastic properties.

2. MODELING PROCEDURES

In this paper the uniaxial constitutive rela-
tion of concrete under arbitrary loading histories
is proposed to be simulated by the behavior of a
structure composed of elasto-viscoplastic bar ele-
ments as shown in Fig.1. In order to establish this
model the properties of each element has to be
known for a given strain-time history.

2.1 CONSTITUTIVE RELATION OF ELEMENTS

In the selection of the constitutive relations
of individual elements, which use the same forms of
equations but different coefficients for each ele-
ment, it is advisable to use functions which are not
only relatively simple but can also represent some
basic characteristics of concrete. As shown in
Fig.2, each element of the model is composed of
three interrelated components, namely, elastic com-
ponent, plastic component and viscoplastic com-
ponent in order to account for the corresponding
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Fig.1 Concrete model
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Fig.2 Element model
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strains. The characteristics of each component is explained first. In this
paper, the stresses and strains used are normalized by the maximum stress
and the corresponding strain respectively with plus for compression.

The elastic component of an element generates the elastic strain of
the element only. Assuming the initial elastic modulus of the elastic com-
ponent being E, the stress of the elastic component is

ce=E- o (1)

As external load increases, plastic strain of concrete will develop
even if load speed is very high. The plastic strain depends not only on
the stress o o applied to this element or the elastic strain according to
Eq.(1) but also on viscoplastic strain & +v» because plastic strain is af-
fected by the compact of concrete due to viscoplastic strain. In this
model plastic strain is presumed as follows

3 p/ & e1=(EXP(a/(1-0— eo/t ex)b)'EXp(a)‘ & vp/( € er1tC* & vp))mux (2)

in which a, b and ¢ are material coefficients. The symbol ¢ i1 is the maxi-
mum compressive elastic strain that this element can reach. The notation
( )Jmax Mmeans the maximum value in loading history. For tensile loading it
is assumed that time independent plastic deformation does not occur.

In an individual element the time dependent strain is included in a
viscoplastic component which consists of a dash pot and a strain hardening
slider as shown in Fig.2.

de vo/dt = v + 0 a/E (3)

in which ¢ +p is viscoplastic strain, 7 is supposed to depend on the stress
on the dash pot o a and a fluid parameter of concrete 7 o,

7 = 70(0a/(E* £e1))/(1-(0 a/(E" € 1)) (4)

in which b, e are constants. These formula of the dash pot can also be used
for tensile viscoplastic strain & +p< with the maximum tensile elastic
strain ¢ eix in place of & 1. As viscoplastic strain increases the yielding
stress of the slider will also become greater due to strain hardening.
During the loading process, the yielding stress of compressive strain har-
dening is given by

Oyve= E+Crp1* € o1 (1-g/Ln(& vp/ & «1+EXD(8))) (5)

in which g and c-p. are coefficients, E+ Crp1* &€ o1 is maximum yielding
stress that can be gained through viscoplastic compressive strain harden-
ing of the slider. In the case of tensile viscoplastic strain hardening, the
yielding stress ¢ »« can be obtained by the same strain hardening rule as
Eq.5, but with € e1e replacing e . and different values of coefficients. The
slider only moves when tensile stress or compressive stress is greater than
corresponding yielding stress. The stresses of these components in an ele-
ment should satisfy equilibrium. Hence, the stress of an element is

Ce*Ev s = 0w + Ca (6)

in which, o vp is the stress of viscoplastic hardening slider
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= 0 when 0 3¢<0 o< 0 3o
[ O, e when o0 y+>0 o (n
= 0 ye, when o0 >0 ye
hence,
de vp/dt = 7 « (0 -0 vp)/E (8)

The total strain of the element should be

equal to the sum of elastic, plastic, vis- A
coplastic strains and crack strain ¢ <
£ = Eot Ep+t Evp t Evprt * Eo (9) A
During unloading of the present model
some of the elements may be in tension be- 8/ @)

cause all the elements have different o
stresses due to their different properties. If . .
tensile strain of an element is greater than Fig.3 Elastic strain SEESIEE
its maximum tensile strain & i+, the element change of crack strain
will be cracked and can not bear tensile load
later, but can still bear compression when
the micro cracks closing because a part of
the surface will contact. There will be
variation of contact area and crack strain of
a cracked element if elastic strain changes
due to compression. Relation of contact area
Ac and crack strain was chosen as

(Ac_Amin)/(] ‘Amln) = Rc(2 - Rc) (10)

< = —_ P cma.x ll . )
: -2 sl (1 Fig.4 Stress versus strain
Amin = 1/(8 e c™2*/ & o1t1) (12) of an element

where, & c™=* is the maximum crack strain ever underwent. Amin is the con-
tact area when reversing to compressive loading. Re. represents the
recovery of crack strain. The relation of crack strain to elastic strain is
given for loading, unloading and reloading respectively. If compression is
applied without reverse from where crack strain is at its maximum value,

£ 3/5 el = Rc (13)

as shown in Fig.3 by path 1, i.e. the envelope. For unloading from point
A(path 2 in Fig.3) the crack will not open to its original width when elastic
strain ¢ o is 0. The residual crack strain can be represented by (Rco)o
(point B in Fig.3). From point A to point B a parabolic function is assumed

Re = '(1"(Rc)0)(8 e/5 el)2 +2(1_(Rc)0)(5 3/5 el) + (RC)O (14)

If the unloading and reloading path is not on path 2, the relation between
elastic strain and crack strain is given by shifting path 2 as shown in
Fig.3. From above equations, for a given strain or stress of an element,
all the strain components and stress can be solved. Fig.4 illustrates the
stress of an element corresponding to its strain during loading, unloading,
broken and reloading performed instantaneously. Assuming the initial area
of an element is a unity, the load F carried by this element is
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F=Ae'E'Ee (15)

in which A. is effective area less than a unity. In experiments, fracturing
of concrete corresponding to micro crack growth can be observed as load
increasing. In this model the fracturing is taken into consideration by
reducing the area effective in carrying load. It is assumed that the part
of area destroyed due to compressive fracturing is irrecoverable even if
compression becomes smaller later. Two factors which cause the compres-
sive damage of concrete are considered here. One is the damage of elastic
component due to elastic strain, i.e. element stress, and another one is the
damage of viscoplastic strain hardening slider due to viscoplastic strain
developed with time. They are defined by Ke(& em), a function of the maxi-
mum elastic strain experienced by the element & em and K+o(e +vp), a func-
tion of compressive viscoplastic strain ¢ +n. The effective area can be ob-
tained from the two damage functions and the contact area in Eq.10

Ae = Ke(& em) . Kvp(5 VD) « Ac
= Exp(-c(Exp(a/(1-¢ o/ € e1)P)-Exp(a))?) « EXp(-c'(& +vp)?¥') « Ac (16)

2.2 ELEMENT PROPERTIES AS DENSITY FUNCTIONS OF ELASTIC LIMITS

After establishing the constitutive model of individual elements, the
problem remained is how to find the composition of elements, i.e. the
parameter E, € o1 and ¢ -1+ Of each element. In this paper elements are
divided according to their maximum compressive elastic strain e <. of elas-
tic components. By this way elastic moduli of the elastic components and
their maximum tensile strains are defined as functions of & o:(for clarity x
is used instead of ¢ 1, afterwards). The total initial elastic modulus of
the elastic components of those elements whose maximum elastic compressive
strains are within (x4,X;+*AX) can be obtained from a density function f(x)

X1+ X
AE=§ Eo « f(x) - dx (17)
where: Eo is the in)i(‘éial stiffness of concrete composite and
S oof(x)dx =1 (18)
The constituti(\)re relation can be written as,
o(g)= J”:;e-Eo-se-f(x)dx (19)

where ¢ is the strain of the model. Ao, & are functions of & and load-
ing history. In order to get better results both on envelope and on
unloading-reloading loops, elastic moduli Enw. of very small and instant
unloading from the envelope are also used in solving for f(x). We can have
these elastic moduli from the following equation

Lo o]

Enu(e) = § As* Eo- f(x) - dx (20)
0
From experiments or available models we can find the expected values of
Egs.19,20 o '(e¢) and E'nu(e ) under high load speed. The density function
f(x) can be so selected as to make the weighted square-root error between
0 (&), Enu(e) computed from this model and o'(e), E'nu(e) the smallest

&
Error2 = .f (p 1(5) © (0" (5)"0 (E))z +92(8)' (E'nu(E)_Enu(E))z)ds (21)
0
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in which pi(e) and p 2(e) are weighting functions. We can choose the base
functions for f(x), for example as polynomials, and then find the coeffi-
cients. In order to solve the problem numerically, we rewrite Eqgs.(19),(20) in
discrete form as

0(8)= ): Ae'El'(ae)l (22)
1=1
Enu( & ) = ;:1 Ae- E; (23)

By minimizing the error function Eq.(21) we can obtain E,; (i=1,,,n), which can
be used as the elastic moduli of the elastic components of discrete ele-
ments. The maximum tensile strain of the elastic components can be related
to their corresponding maximum compressive strain by a function. A simple
one is a linear function of X: & e1c= Cc* X, where the constant ¢ can be ob-
tained from unloading-reloading loops. The coefficients in the constitutive
relation of elements can also be changed in order to obtain better results.

From the above equations we can calculate stress of concrete under
any strain-time history by giving proper values to those coefficients.

3. MODEL PREDICTIONS

Based on the constitutive relation of Maekawa model(l) as an envelope
of instant loading, we managed to find the density function f(x) and the
coefficients needed in the elastic and plastic components. The coefficients
of viscoplastic components are adjusted to make the results satisfactory.
Using those coefficients we computed some results considering the effects
of loading speeds to simulate several phenomena observed in experiments.
Fig.5 shows the constitutive relation obtained for a instantaneous loading
by using the above proposed model. It can be seen that the envelopes from
present model and Maekawa model are in good agreement. The instantaneous
elastic moduli for the two unloading-reloading loops also coincide with the
experimental results reported(2),(3). Fig.6 is calculated from the present
model for a loading history with varied loading speed. It can be observed
that because the loading speed is not infinite, viscoplastic strain develops
and causes the unloading curve steeper than the corresponding ones of in-
stant unloading in Fig.5. At points C and F, although the stress of the
model is zero, some of the elements have been cracked, some are in tension
and the others are in compression because all of them have different
values of e o1 and ¢ e1e. The tensions will produce tensile viscoplastic
strain, which relaxes the residual stress in the model and allows the
strain recover to point D and F, respectively. This phenomenon is often
observed in experiments. In Fig. 7 it is shown that the stresses are in-
creased to certain levels instantly, kept as constants for the same time to
allow viscoplastic strain to develop, and then increased instantly again.
Paths 1, 2 and 3 demonstrated that if the levels at which the stresses were
kept were relatively low, the stress-strain curves obtained for the later
instant loadings would approach the stress-strain curve of instant loading
from the very beginning. The stress-strain relation of the loading with in-
finite slow speed is also shown in this figure. Fig.8 shows an experimental
result of a test sample under a cyclic loading in Reference 2 and the
analytical result computed by using the present model. From this figure
we can see that this model simulated this experimental result very well
before the sample is near to be damaged.
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Fig.7 Time-dependent strain Fig.8 Response to cyclic loading

4. CONCLUSION

From this study it can be concluded that concrete behaves as a com-
posite structural material during unloading and reloading, which causes
the nonlinearity of unloading-reloading loops. The model proposed here
based on the above concept can simulate the constitutive relation of con-
crete with good accuracy, but it needs simplifying in order to apply it to
numerical analysis of structures.
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